Bifunctional catalysts are a major type of heterogeneous catalytic systems that have been widely investigated for biomass upgrading. In this work, Ru-catalysts based on sulfonated porous aromatic frameworks (PAFs) were used in the hydrodeoxygenation (HDO) of lignin-derived compounds: guaiacol, veratrole, and catechol. The relationship between the activity of metal nanoparticles and the content of acid sites in synthesized catalysts was studied.
View Article and Find Full Text PDFThis work was focused on the mitigation of physical aging in thin-film composite (TFC) membranes (selective layer ~1 μm) based on polymer intrinsic microporosity (PTMSP) by the introduction of both soft, branched polyethyleneimine (PEI), and rigid, porous aromatic framework PAF-11, polymer additives. Self-standing mixed-matrix membranes of thicknesses in the range of 20-30 μm were also prepared with the same polymer and fillers. Based on 450 days of monitoring, it was observed that the neat PTMSP composite membrane underwent a severe decline of its gas transport properties, and the resultant CO permeance was 14% (5.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2017
In the emission (Co) variant of Mössbauer spectroscopy (EMS), the Co radionuclide (with a half-life of 9months) is used that undergoes a nuclear decay Co→Fe via electron capture followed by the emission of a γ-quantum, the energy of which is modified by the chemical state and the close coordination environment of the parent Co atom. While EMS has been used largely in materials science and nuclear chemistry, its high sensitivity can also be of great advantage in revealing fine structural features and for speciation analysis of biological complexes, whenever the Co cation can be used directly as the coordinating metal or as a substitute for native cobalt or other metal ions. As such EMS applications are yet rare, in order to reliably interpret emission spectra of sophisticated Co-doped biosystems, model EMS studies of simple cobalt biocomplexes are necessary.
View Article and Find Full Text PDFIn biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with 57Co emission Mössbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains.
View Article and Find Full Text PDFInteraction of cobalt(II) at micromolar concentrations with live cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense (strain Sp245) and further transformations of the metal cation were monitored using 57Co emission Mössbauer spectroscopy (EMS). Cell suspensions of the bacterial culture (2.4 x 10(8) cells ml(-1)) were doped with radioactive 57CoCl2 (1 mCi; final concentration 2 x 10(-6) M 57Co2+), kept under physiological conditions for various periods of time (from 2 min up to 1 hour) and then rapidly frozen in liquid nitrogen.
View Article and Find Full Text PDFCD spectroscopic study of the secondary structure of partly adenylylated glutamine synthetase (GS) of the bacterium Azospirillum brasilense showed both the native and cation-free (EDTA-treated) enzyme to be highly structured (58 and 49% as alpha-helices, 10 and 20% as beta-structure, respectively). Mg(2+), Mn(2+), or Co(2+), when added to the native GS, had little effect on its CD spectrum, whereas their effects on the cation-free GS were more pronounced. Emission ((57)Co) Mössbauer spectroscopic (EMS) study of (57)Co(2+)-doped cation-free GS in frozen solution and in the dried state gave similar spectra and Mössbauer parameters for the corresponding spectral components, reflecting the ability of the Co(2+)-enzyme complex to retain its properties upon drying.
View Article and Find Full Text PDF