High entropy alloys (HEAs) and their closely related variants, called multi-principal element alloys (MPEAs), are the topic of a rather new area of research, and so far, the gathered knowledge is incomplete. This is especially true when it comes to material libraries, as the fabrication of HEA and MPEA samples with a wide variation in chemical compositions is challenging in itself. Additive manufacturing technologies are, to date, seen as possibly the best option to quickly fabricate HEA and MPEA samples, offering both the melting metallurgical and solid-state sintering approach.
View Article and Find Full Text PDFLaser powder-bed fusion (LPBF) has significantly gained in importance and has become one of the major fabrication techniques within metal additive manufacturing. The fast cooling rates achieved in LPBF due to a relatively small melt pool on a much larger component or substrate, acting as heat sink, result in fine-grained microstructures and high oversaturation of alloying elements in the α-aluminum. Al-Si-Mg alloys thus can be effectively precipitation hardened.
View Article and Find Full Text PDFThe thorough description of the peculiarities of additively manufactured (AM) structures represents a current challenge for aspiring freeform fabrication methods, such as selective laser melting (SLM). These methods have an immense advantage in the fast fabrication (no special tooling or moulds required) of components, geometrical flexibility in their design, and efficiency when only small quantities are required. However, designs demand precise knowledge of the material properties, which in the case of additively manufactured structures are anisotropic and, under certain circumstances, inhomogeneous in nature.
View Article and Find Full Text PDF