In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor-acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2024
Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs).
View Article and Find Full Text PDFDesigning responsive, adaptive, and dynamic supramolecular systems in water, the incorporation of photoresponsive units in amphiphilic molecular structures enables functional responses in a non-invasive way by using light. However, in aqueous media, vast majority of reported synthetic photoresponsive molecular amphiphiles are commonly driven by high energy and bio-damaging UV-light for supramolecular transformation at multiple length-scale. Herein, we present newly designed visible-light controlled supramolecular assembly of donor-acceptor Stenhouse adducts amphiphiles (DA) with excellent stability and solubility in aqueous media.
View Article and Find Full Text PDFgem-Difluoroalkene is a bioisostere of carbonyl group for improving bioavailability of drug candidates. Herein we develop structurally diverse 2,2-difluorovinyl benzoates (BzO-DFs) as versatile building blocks for modular synthesis of gem-difluoroenol ethers (44 examples) and gem-difluoroalkenes (2 examples) by Ni-catalyzed cross coupling reactions. Diverse BzO-DFs derivatives bearing sensitive functional groups (e.
View Article and Find Full Text PDF