Publications by authors named "Leong Hwei Fen"

Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis.

View Article and Find Full Text PDF

Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG.

View Article and Find Full Text PDF
Article Synopsis
  • Mouse embryonic stem cells (ESCs) can occasionally enter a 2-cell (2C) stage-like state, which is marked by specific gene expressions that indicate early embryonic characteristics.
  • The study identifies NELFA, a maternal factor that influences the upregulation of 2C genes and enhances the developmental potential of ESCs, particularly when it interacts with Top2a.
  • Chemical suppression of glycolysis was found to encourage the transition to a 2C-like state, indicating that metabolic changes can impact cell fate without needing genetic manipulation.
View Article and Find Full Text PDF

Inflammatory responses contribute to the morbidity and mortality of severe influenza. Current antiviral therapy offers limited success in treating severe influenza infection with both H1N1 and H5N1 viruses. We evaluated the effect of a neuraminidase inhibitor in combination with immunomodulatory drugs in vitro and in a mouse model of influenza A H1N1 infection by determining survival rate, lung inflammation markers and histopathology.

View Article and Find Full Text PDF

The Sprouty (Spry) proteins function as inhibitors of the Ras-ERK pathway downstream of various receptor tyrosine kinases. In this study, we have identified Tesk1 (testicular protein kinase 1) as a novel regulator of Spry2 function. Endogenous Tesk1 and Spry2 exist in a complex in cell lines and mouse tissues.

View Article and Find Full Text PDF

Mesenchymal stem cells have been implicated as playing an important role in stem cell engraftment. Recently, a new pluripotent population of umbilical cord blood (UCB) cells, unrestricted somatic stem cells (USSCs), with intrinsic and directable potential to develop into mesodermal, endodermal, and ectodermal fates, has been identified. In this study, we evaluated the capacity of ex vivo expanded USSCs to influence the homing of UCB-derived CD34(+) cells into the marrow and spleen of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice.

View Article and Find Full Text PDF

Because the Sprouty (Spry) proteins were shown to be inhibitors of the mainstream Ras/ERK pathway, there has been considerable interest in ascertaining their mechanism of action especially since a possible role as tumor suppressors for these inhibitory proteins has been suggested. We compared the ability of the mammalian Spry isoforms to inhibit the Ras/ERK pathway in the context of fibroblast growth factor receptor (FGFR) signaling. Spry2 is considerably more inhibitory than Spry1 or Spry4, and this correlates with the binding to Grb2 via a C-terminal proline-rich sequence that is found exclusively on Spry2.

View Article and Find Full Text PDF

Sprouty (Spry) proteins were found to be endogenous inhibitors of the Ras/mitogen-activated protein kinase pathway that play an important role in the remodeling of branching tissues. We investigated Spry expression levels in various cancers and found that Spry1 and Spry2 were down-regulated consistently in breast cancers. Such prevalent patterns of down-regulation may herald the later application of these isoforms as tumor markers that are breast cancer specific and more profound than currently characterized markers.

View Article and Find Full Text PDF

Mammalian Sprouty (Spry) proteins are now established as receptor tyrosine kinase-induced modulators of the Ras/mitogen-activated protein kinase pathway. Specifically, hSpry2 inhibits the fibroblast growth factor receptor (FGFR)-induced mitogen-activated protein kinase pathway but conversely prolongs activity of the same pathway following epidermal growth factor (EGF) stimulation, where activated EGF receptors are retained on the cell surface. In this study it is demonstrated that hSpry2 is tyrosine-phosphorylated upon stimulation by either FGFR or EGF and subsequently binds endogenous c-Cbl with high affinity.

View Article and Find Full Text PDF

Several genetic studies in Drosophila have shown that the dSprouty (dSpry) protein inhibits the Ras/mitogen-activated protein (MAP) kinase pathway induced by various activated receptor tyrosine kinase receptors, most notably those of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR). Currently, the mode of action of dSpry is unknown, and the point of inhibition remains controversial. There are at least four mammalian Spry isoforms that have been shown to co-express preferentially with FGFRs as compared with EGFRs.

View Article and Find Full Text PDF