This work presents two brain-computer interfaces (BCIs) for shoulder pre-movement recognition using: 1) manual strategy for Electroencephalography (EEG) channels selection, and 2) subject-specific channels selection by applying non-negative factorization matrix (NMF). Besides, the proposed BCIs compute spatial features extracted from filtered EEG signals through Riemannian covariance matrices and a linear discriminant analysis (LDA) to discriminate both shoulder pre-movement and rest states. We studied on twenty-one healthy subjects different frequency ranges looking the best frequency band for shoulder pre-movement recognition.
View Article and Find Full Text PDF