Publications by authors named "Leonce S"

A series of 6-methoxy-3,3,14-trimethyl-3,14-dihydro-7H-benzo[b]chromeno[6,5-g][1,8]naphthyridin-7-one (4), 13-aza derivatives of benzo[b]acronycine, the isomeric 5-methoxy-2,2,13-trimethyl-2,13-dihydro-6H-benzo[b]chromeno[7,6-g][1,8]naphthyridin-6-one (5), and related cis-diols mono- and diesters were designed and synthesized. Their in vitro and in vivo biological activities were evaluated. As previously observed in the acronycine series, esters were the most potent derivatives exhibiting submicromolar activities; among them monoesters are particularly active.

View Article and Find Full Text PDF

Aberrant activity of the receptor tyrosine kinases MET, AXL, and FGFR1/2/3 has been associated with tumor progression in a wide variety of human malignancies, notably in instances of primary or acquired resistance to existing or emerging anticancer therapies. This study describes the preclinical characterization of S49076, a novel, potent inhibitor of MET, AXL/MER, and FGFR1/2/3. S49076 potently blocked cellular phosphorylation of MET, AXL, and FGFRs and inhibited downstream signaling in vitro and in vivo.

View Article and Find Full Text PDF

If a new generation of iron chelators specifically devoted for cancer chemotherapy emerged these last years, any of them has not yet been approved at this time. Accordingly, there is a need to optimize new chelating molecules for iron chelation therapy and cancer treatment. So, the objective of the present investigation was to characterize the antiproliferative activity and the iron chelating capacity of the iron chelator S1 [bis-N-(8-hydroxyquinoline-5-ylmethyl)benzylamine].

View Article and Find Full Text PDF

Aims: We have developed biochemical and cell based assays to characterize small therapeutic molecules that inhibit the DNA damage checkpoint enzyme, Chk1 (Checkpoint kinase 1).

Main Methods: To prepare a screen of large chemical libraries, we purified the full-length and the catalytic domain versions of human Chk1. We characterized their properties and then selected full-length Chk1 as the variant most suitable for screening.

View Article and Find Full Text PDF

The impact of substitutions at position 10 in the A ring of the cytotoxic benzo[a]acronycine and benzo[b]acronycine series has been explored. 10-Bromobenzo[a] and 10-bromobenzo[b]acronycine were prepared in 12% and 15% yield respectively from commercially available chemicals. Their 1,2-dihydro-1,2-dihydroxy diesters were synthesized.

View Article and Find Full Text PDF

c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice.

View Article and Find Full Text PDF

The synthesis of new 4-amino-tetrahydroquinazolino[3,2-e]purine derivatives along with their activity in cell-free enzymatic assays on Src is reported. Some compounds emerged as moderately active inhibitors of the enzyme and showed antiproliferative effects on the murine leukemia L1210 cell line. Docking studies have been also performed to analyze the binding mode of compounds under study and to identify the structural determinants of their interaction.

View Article and Find Full Text PDF

We report the efficient synthesis and biological evaluation of new benzodioxinoindolocarbazoles heterocycles (BDCZs) designed as potential anticancer agents. Indolic substitution and maleimide variations were performed to design a new library of BDCZs and their cytotoxicity were evaluated on two representative cancer cell lines. Several derivatives have shown a marked cytotoxicity with IC(50) values in the nanomolar range.

View Article and Find Full Text PDF

In order to explore the structure-activity relationships in the acronycine and psorospermin series, simplified analogues of the highly cytotoxic (+/-)-(2R*,1'R*)-5-methoxy-11-methyl-2-(2-methyloxiran-2-yl)-1,2-dihydro-11H-furo[2,3-c]acridin-6-one and (+/-)-(2R*,1'R*)-5-methoxy-13-methyl-2-(2-methyloxiran-2-yl)-1,2-dihydro-13H-benzo[b]furo[3,2-h]-acridin-6-one lacking the fused furan ring, including 3-allyloxy-1-methoxy-10-methyl-acridin-9(10H)-one, 3-allyloxy-1-methoxy-5-methyl-benzo[b]acridin-12(5H)-one, the corresponding epoxides, and related dihydrodiol esters and diesters were prepared. Only the simplified oxirane compounds displayed significant antiproliferative activity compared to the parent compounds. The oxirane alkylating unit appears indispensible to observe significant antiproliferative activity in both series, but the presence of the angularly fused furan ring does not appear as a crucial structural requirement to observe significant cytotoxic activity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the biochemical pathways leading to mitotic catastrophe by using a new compound, S23906, which targets DNA and disrupts its structure.
  • S23906, like other known genotoxic agents, activates specific cellular responses such as gamma-H2AX and checkpoint kinase 1, highlighting its ability to induce DNA damage.
  • The research finds that mitotic catastrophe occurs in a significant portion of cells after S23906 treatment, suggesting this response may be a common outcome for various forms of DNA damage.
View Article and Find Full Text PDF

S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one.

View Article and Find Full Text PDF

Monocinnamoyl esters at position 2 of (+/-)-cis-1,2-dihydroxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one and their acetyl derivatives at position 1 were prepared as stabilized analogues of the anticancer alkylating agent S23906-1. Monocinnamoyl esters at position 2 were slower DNA alkylators than the reference 2-monoacetate. Mixed esters bearing an acetyl ester group at position 1 and a cinnamoyl ester group at position 2 alkylated DNA slower than S23906-1.

View Article and Find Full Text PDF

Herein, we describe the structure-activity relationship study of a new 1-(arylalkyl)-11H-benzo[f]-1,2-dihydropyrido[3,2,c][1,2,5]oxathiazepine 5,5-dioxide series of antimitotic agents. The pharmacological results obtained from previous works allowed us to identify compound 1 as a new cytotoxic agent inhibiting tubulin polymerization. We have undertaken the synthesis of its non-methylated analogue 7 and have extended our investigations to a novel, structurally related benzopyridooxathiazepine dioxide series.

View Article and Find Full Text PDF

Compounds possessing the epoxyfuran system present in the natural cytotoxic dihydrofuroxanthone psorospermin (4) fused onto the acridone or benzo[b]acridone chromophores present in the antitumor acronycine (1) and S23906-1 (3) were prepared. The basic furoacridone and benzofuroacridone cores bearing an isopropenyl substituent at a convenient position were synthesized by condensation of 1,3-dihydroxyacridone (7) or 1,3-dihydroxybenz[b]acridin-12(5H)-one (9) with (E)-1,4-dibromo-2-methylbut-2-ene. In both series, the (2R*,1'S*) epoxides, with the same relative configuration as psorospermin, were the most active compounds, exhibiting cytotoxic properties with IC50 values in the 10-100 nM range.

View Article and Find Full Text PDF

Rebeccamycin derivative 1 bearing a sugar moiety linked to both indole nitrogens and an amino substituent on the carbohydrate unit was synthesized in three steps from the bacterial metabolite. This compound was found to be a highly potent checkpoint kinase 1 inhibitor with an IC(50) value of 2.8nM.

View Article and Find Full Text PDF

We describe here an efficient synthesis of new 5-azaindolocarbazoles designed for cytotoxic and Chk1 inhibiting properties. The synthesis of 'symmetrical' and 'dissymmetrical' structures is discussed. Concerning the dissymmetrical 5-azaindolocarbazoles derivatives, with both an indole moiety and a 5-azaindole moiety, the synthesis was achieved using two very efficient key steps.

View Article and Find Full Text PDF

In order to explore the structure-activity relationships in the acronycine series, simplified analogues of cis-1,2-diacetoxy-1,2-dihydroacronycine and cis-1,2-diacetoxy-1,2-dihydrobenzo[b]acronycine (S23906-1, under clinical trials) lacking the fused pyran ring, but possessing an acetoxymethyl leaving group at position 4 were prepared. These new analogues only displayed marginal antiproliferative activity compared to the parent compounds. The presence of the angularly fused dimethylpyran ring appears as an indispensable structural requirement to observe significant cytotoxic activity in this series.

View Article and Find Full Text PDF

In the course of structure-activity relationship studies on granulatimide analogues, new pyrrolo[3,4-c]carbazoles have been synthesized in which the imidazole heterocycle was replaced by a five-membered ring lactam system or a dimethylcyclopentanedione. Moreover, the synthesis of an original structure in which a sugar moiety is attached to the indole nitrogen and to a six-membered D ring via an oxygen is reported. The inhibitory activities of the newly synthesized compounds toward checkpoint kinase 1 and their in vitro antiproliferative activities toward three tumor cell lines: murine leukemia L1210, and human colon carcinoma HT29 and HCT116 are described.

View Article and Find Full Text PDF

In the course of an automated screening for small molecules presenting cytotoxic activity, eight new cyclophanes named kermadecins A-H (1-8), have been isolated from the bark of a New Caledonian plant, Kermadecia elliptica, Proteaceae. A LC/APCI-MS study performed on kermadecins A, B and C, provided a reliable method for the detection of other analogues existing in small quantities in the extract. This led to the isolation of five other members of this chemical series.

View Article and Find Full Text PDF

NRH:quinone oxidoreductase 2 (QR2) is a long forgotten oxidoreductive enzyme that metabolizes quinones and binds melatonin. We used the potency of the RNA interference (RNAi)-mediated gene silencing to build a cellular model in which the role of QR2 could be studied. Because standard approaches were poorly successful, we successively used: (1) two chemically synthesized fluorescent small interfering RNA (siRNA) duplexes designed and tested for their gene silencing capacity leading to a maximal 40% QR2 gene silencing 48h post-transfection; (2) double transfection and cell-sorting of high fluorescent siRNA-transfected HT22 cells further enhancing QR2 RNAi silencing to 88%; (3) stable QR2 knock-down HT22 cell lines established with H1and U6 promoter driven QR2 short hairpin RNA (shRNA) encoding vectors, resulting in a 71-80% reduction of QR2 enzymatic activity in both QR2 shRNA HT22 cells.

View Article and Find Full Text PDF

Investigation of an EtOAc extract of the bark of Libocedrus chevalieri led to the isolation of a new cytotoxic lignan, 5-methoxy-4-epipodophyllotoxin (1), and three known podophyllotoxin analogues, 5-methoxypodophyllotoxin, 5-methoxypodophyllotoxin-4-O-beta-D-glucoside, and podophyllotoxin-4-O-beta-D-glucoside. Six sesquiterpenoids and a diterpenoid were also obtained. Of these, compounds 2-4 are new sesquiterpenoids, named libocedrines A-C, and 3beta-hydroxyilicic alcohol was isolated for the first time from a higher plant.

View Article and Find Full Text PDF

The synthesis of new isogranulatimide analogues, their inhibitory activities toward the Checkpoint 1 kinase (Chk1), and their in vitro cytotoxicities toward four tumor cell lines (one murine L1210 leukemia, and three human cell lines: DU145 prostate carcinoma, A549 non-small cell lung carcinoma, and HT29 colon carcinoma) are described. The affinity for DNA of some representative compounds and their ability to induce DNA cleavage mediated by topoisomerase I have been examined. In some of the newly synthesized compounds, the imidazole heterocycle of isogranulatimide is replaced by a pyrrole and/or the indole unit is replaced by a 7-azaindole.

View Article and Find Full Text PDF

The synthesis of substituted pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone is reported. Their inhibitory properties toward Checkpoint 1 kinase (Chk1) have been evaluated and their in vitro antiproliferative activities toward three tumor cell lines: murine leukemia L1210, human colon carcinoma HT29 and HCT116 have been determined. From the biological results, it appears that, in contrast with the upper E heterocycle, the lower D heterocycle is not absolutely required for Chk1 inhibition.

View Article and Find Full Text PDF

The E-ring lactone is the Achilles' heel of camptothecin derivatives: although it is considered necessary for the inhibition of the enzyme topoisomerase I (topo1), the opening of the lactone into a carboxylate abolishes the generation of topo1-mediated DNA breaks. S38809 is a novel camptothecin analog with a stable 5-membered E-ring ketone; therefore, it lacks the lactone function. DNA relaxation and cleavage assays revealed that S38809 functions as a typical topo1 poison by stimulating DNA cleavage at T downward arrow G sites.

View Article and Find Full Text PDF

Coupling of 6-hydroxy-3,3-14-trimethyl-3,14-dihydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one (6) with alpha,omega-diiodoalkanes of varying length under alkaline conditions gave dimers 7-10. Halogenated ethers 11-14, cyclization products 15-17, and compounds 18-22 were also isolated in small yield from the reaction mixtures. Compounds 7-10 were more potent than acronycine and benzo[b]acronycine in inhibiting L1210 cell proliferation.

View Article and Find Full Text PDF