Publications by authors named "Leonardo W T Barros"

Colloidal semiconductor nanomaterials present broadband, with large cross-section, two-photon absorption (2PA) spectra, which turn them into an important platform for applications that benefit from a high nonlinear optical response. Despite that, to date, the only means to control the magnitude of the 2PA cross-section is by changing the nanoparticle volume, as it follows a universal volume scale, independent of the material composition. As the emission spectrum is connected utterly to the nanomaterial dimensions, for a given material, the magnitude of the nonlinear optical response is also coupled to the emission spectra.

View Article and Find Full Text PDF

We report on the two-photon absorption spectra of a series of 2,6-disubstituted BODIPY dyes. Depending on the substituents, we observe increasing two-photon absorption cross sections with values up to 350 GM compared to 70 GM in the unsubstituted dye. Quantum chemical calculations are performed to assign the absorption bands and to understand the factors controlling the size of the two-photon absorption cross section.

View Article and Find Full Text PDF