Background: Magnetic resonance imaging (MRI) is a primary non-invasive imaging modality for tumor segmentation, leveraging its exceptional soft tissue contrast and high resolution. Current segmentation methods typically focus on structural MRI, such as T-weighted post-contrast-enhanced or fluid-attenuated inversion recovery (FLAIR) sequences. However, these methods overlook the blood perfusion and hemodynamic properties of tumors, readily derived from dynamic susceptibility contrast (DSC) enhanced MRI.
View Article and Find Full Text PDFPurpose: Accurate and timely organs-at-risk (OARs) segmentation is key to efficient and high-quality radiation therapy planning. The purpose of this work is to develop a deep learning-based method to automatically segment multiple thoracic OARs on chest computed tomography (CT) for radiotherapy treatment planning.
Methods: We propose an adversarial training strategy to train deep neural networks for the segmentation of multiple organs on thoracic CT images.