Plant height is an important agronomic trait with a significant impact on grain yield, as demonstrated by the positive effect of the () dwarfing alleles () on lodging and harvest index in the "Green Revolution" wheat varieties. However, these gibberellic acid (GA)-insensitive alleles also reduce coleoptile length, biomass production, and yield potential in some environments, triggering the search for alternative GA-sensitive dwarfing genes. Here we report the identification, validation, and characterization of the gene underlying the GA-sensitive dwarfing locus in wheat.
View Article and Find Full Text PDFBackground: Plant miRNAs are a class of small non-coding RNAs that can repress gene expression at the post-transcriptional level by targeting RNA degradation or promoting translational repression. There is increasing evidence that some miRNAs can derive from a group of non-autonomous class II transposable elements called Miniature Inverted-repeat Transposable Elements (MITEs).
Results: We used public small RNA and degradome libraries from Triticum aestivum to screen for microRNAs production and predict their cleavage target sites.
Background: In breeding programs, the selection of cultivars with the highest yield potential consisted in the selection of the yield per se, which resulted in cultivars with higher grains per spike (GN) and occasionally increased grain weight (GW) (main numerical components of the yield). In this study, quantitative trait loci (QTL) for GW, GN and spike fertility traits related to GN determination were mapped using two doubled haploid (DH) populations (Baguette Premium 11 × BioINTA 2002 and Baguette 19 × BioINTA 2002).
Results: In total 305 QTL were identified for 14 traits, out of which 12 QTL were identified in more than three environments and explained more than 10% of the phenotypic variation in at least one environment.
Fruiting efficiency (FE, grains per g of spike dry weight at anthesis) was proposed as a promising spike trait to improve wheat yield potential, based on its functional relationship with grain number determination and the evidence of trait variability in elite germplasm. During the last few years, we have witnessed great advances in the understanding of the physiological and genetic basis of this trait. The present review summarizes the recent heritability estimations and the genetic gains obtained when fruiting efficiency was measured at maturity (FEm, grains per g of chaff) and used as selection criterion.
View Article and Find Full Text PDFThis study identified and validated two QTL associated with spike fertile floret and fruiting efficiencies. They represent two new loci to use in MAS to improve wheat yield potential. The spike fruiting efficiency (FE-grains per unit spike dry weight at anthesis, GN/SDW) is a promising trait to improve wheat yield potential.
View Article and Find Full Text PDFWe provide a comprehensive and reliable potato TE landscape, based on a wide variety of identification tools and integrative approaches, producing clear and ready-to-use outputs for the scientific community. Transposable elements (TEs) are DNA sequences with the ability to autoreplicate and move throughout the host genome. TEs are major drivers in stress response and genome evolution.
View Article and Find Full Text PDFBackground: Increasing wheat (Triticum aestivum L.) production is required to feed a growing human population. In order to accomplish this task a deeper understanding of the genetic structure of cultivated wheats and the detection of genomic regions significantly associated with the regulation of important agronomic traits are necessary steps.
View Article and Find Full Text PDFBackground: Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements present in a high number of conserved copies in eukaryote genomes. An accurate identification of these elements can help to shed light on the mechanisms controlling genome evolution and gene regulation. The structure and distribution of these elements are well-defined and therefore computational approaches can be used to identify MITEs sequences.
View Article and Find Full Text PDFThis study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits. Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index.
View Article and Find Full Text PDFBackground: Research projects often involve observation, registration, and data processing starting from information obtained in field experiments. In many cases, these tasks are carried out by several persons in different places, times, and ways, adding different levels of complexity and error in data collecting. Furthermore, data processing can be time consuming, and input errors may produce unwanted results.
View Article and Find Full Text PDFSurvey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete.
View Article and Find Full Text PDFThe identification of genetically homogeneous groups of individuals is an ancient issue in population genetics and in the case of crops like wheat, it can be valuable information for breeding programs, genetic mapping and germplasm resources. In this work we determined the genetic structure of a set of 102 Argentinean bread wheat (Triticum aestivum L.) elite cultivars using 38 biochemical and molecular markers (functional, closely linked to genes and neutral ones) distributed throughout 18 wheat chromosomes.
View Article and Find Full Text PDFThe activation of the meristem identity gene VERNALIZATION1 (VRN1) is a critical regulatory point in wheat (Triticum spp.) flowering. In photoperiod-sensitive wheat varieties, VRN1 is expressed only under long days (LDs), but mutants carrying deletions in a regulatory element in its promoter show VRN1 transcription and early spike development under short days (SDs).
View Article and Find Full Text PDFBackground: More than 80% of the wheat genome is composed of transposable elements (TEs). Since active TEs can move to different locations and potentially impose a significant mutational load, their expression is suppressed in the genome via small non-coding RNAs (sRNAs). sRNAs guide silencing of TEs at the transcriptional (mainly 24-nt sRNAs) and post-transcriptional (mainly 21-nt sRNAs) levels.
View Article and Find Full Text PDF