Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8-10 vs.
View Article and Find Full Text PDFThe surfgrass Phyllospadix scouleri grows in highly productive meadows along the Pacific coast of North America. This region has experienced increasingly severe marine heatwaves (MHWs) in recent years. Our study evaluated the impact of consecutive MHWs, simulated in mesocosms, on essential ecophysiological features of P.
View Article and Find Full Text PDFIntertidal seagrasses are subjected to desiccation and direct solar radiation during low tides. It is assumed that the canopy structure can self-protect the underlying shoots during these events, although there is no evidence on a physiological basis. The physiological responses of the surfgrass Phyllospadix torreyi were examined when emerged during low tide, on i) shoots overlaying the canopy, and ii) shoots sheltered within the canopy.
View Article and Find Full Text PDFMovement is fundamental to the ecology and evolutionary dynamics within species. Understanding movement through seed dispersal in the marine environment can be difficult due to the high spatial and temporal variability of ocean currents. We employed a mutually enriching approach of population genetic assignment procedures and dispersal predictions from a hydrodynamic model to overcome this difficulty and quantify the movement of dispersing floating fruit of the temperate seagrass Posidonia australis Hook.
View Article and Find Full Text PDFAccurate estimation of connectivity among populations is fundamental for determining the drivers of population resilience, genetic diversity, adaptation and speciation. However the separation and quantification of contemporary versus historical connectivity remains a major challenge. This review focuses on marine angiosperms, seagrasses, that are fundamental to the health and productivity of temperate and tropical coastal marine environments globally.
View Article and Find Full Text PDFWe investigated the phenology and spatial patterns in Halophila decipiens by assessing biomass, reproduction and seed density in ~400 grab samples collected across nine sites (8 to 14 m water depth) between June 2011 and December 2012. Phenology correlated with light climate which is governed by the summer monsoon (wet period). During the wet period, sedimentary seed banks prevailed, varying spatially at both broad and fine scales, presenting a source of propagules for re-colonisation following the unfavourable growing conditions of the monsoon.
View Article and Find Full Text PDFBackground: Seagrasses are clonal marine plants that form important biotic habitats in many tropical and temperate coastal ecosystems. While there is a reasonable understanding of the dynamics of asexual (vegetative) growth in seagrasses, sexual reproduction and the dispersal pathways of the seeds remain poorly studied. Here we address the potential for a predominantly clonal seagrass, P.
View Article and Find Full Text PDFA movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones.
View Article and Find Full Text PDF