Publications by authors named "Leonardo Mazza"

Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.

View Article and Find Full Text PDF

We study the quantum dynamics in response to time-dependent external potentials of the edge modes of a small fractional quantum Hall fluid composed of few particles on a lattice in a bosonic Laughlin-like state at filling ν=1/2. We show that the nonlinear chiral Luttinger liquid theory provides a quantitatively accurate description even for the small lattices that are available in state-of-the-art experiments, away from the continuum limit. Experimentally accessible data related to the quantized value of the bulk transverse Hall conductivity are identified both in the linear and the non-linear response to an external excitation.

View Article and Find Full Text PDF

We consider a quantum lattice spin model featuring exact quasiparticle towers of eigenstates with low entanglement at finite size, known as quantum many-body scars (QMBS). We show that the states in the neighboring part of the energy spectrum can be superposed to construct entire families of low-entanglement states whose energy variance decreases asymptotically to zero as the lattice size is increased. As a consequence, they have a relaxation time that diverges in the thermodynamic limit, and therefore exhibit the typical behavior of exact QMBS, although they are not exact eigenstates of the Hamiltonian for any finite size.

View Article and Find Full Text PDF

We show that a simple one-dimensional model of spinless fermions with pair hopping displays a phase in which a Luttinger liquid of paired fermions coexists with a Luttinger liquid of unpaired fermions. Our results are based on extensive numerical density-matrix renormalization-group calculations and are supported by a two-fluid model that captures the essence of the coexistence region.

View Article and Find Full Text PDF

Transport phenomena are central to physics, and transport in the many-body and fully-quantum regime is attracting an increasing amount of attention. It has been recently revealed that some quantum spin chains support ballistic transport of excitations at all energies. However, when joining two semi-infinite ballistic parts, such as the XX and XXZ spin-1/2 models, our understanding suddenly becomes less established.

View Article and Find Full Text PDF

Alkaline-earth(-like) atoms, trapped in optical lattices and in the presence of an external gauge field, can form insulating states at given fractional fillings. We will show that, by exploiting these properties, it is possible to realize a topological fractional pump. Our analysis is based on a many-body adiabatic expansion, on simulations with time-dependent matrix product states, and, for a specific form of atom-atom interaction, on an exactly solvable model of fractional pump.

View Article and Find Full Text PDF

Parafermions are emergent excitations that generalize Majorana fermions and can also realize topological order. In this Letter, we present a nontrivial and quasi-exactly-solvable model for a chain of parafermions in a topological phase. We compute and characterize the ground-state wave functions, which are matrix-product states and have a particularly elegant interpretation in terms of Fock parafermions, reflecting the factorized nature of the ground states.

View Article and Find Full Text PDF

In this Letter we present, in a number conserving framework, a model of interacting fermions in a two-wire geometry supporting nonlocal zero-energy Majorana-like edge excitations. The model has an exactly solvable line, on varying the density of fermions, described by a topologically nontrivial ground state wave function. Away from the exactly solvable line we study the system by means of the numerical density matrix renormalization group.

View Article and Find Full Text PDF

The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods.

View Article and Find Full Text PDF