Sensors (Basel)
February 2023
Attitude estimation methods provide modern consumer, industrial, and space systems with an estimate of a body orientation based on noisy sensor measurements. The gradient descent algorithm is one of the most recent methods for optimal attitude estimation, whose iterative nature demands adequate adjustment of the algorithm parameters, which is often overlooked in the literature. Here, we present the effects of the step size, the maximum number of iterations, and the initial quaternion, as well as different propagation methods on the quality of the estimation in noiseless and noisy conditions.
View Article and Find Full Text PDF