Publications by authors named "Leonardo Marchiori"

This study explores the use of silica-coated bacterial nanocellulose (BC) scaffolds with bulk macroscopic yet nanometric internal pores/structures as functional supports for high surface area titania aerogel photocatalysts to design flexible, self-standing, porous, and recyclable BC@SiO-TiO hybrid organic-inorganic aerogel membranes for effective in-flow photo-assisted removal of organic pollutants. The hybrid aerogels were prepared by sequential sol-gel deposition of the SiO layer over BC, followed by coating of the resulting BC@SiO membranes with a porous titania aerogel overlayer of high surface area using epoxide-driven gelation, hydrothermal crystallization, and subsequent supercritical drying. The silica interlayer between the nanocellulose biopolymer scaffold and the titania photocatalyst was found to greatly influence the structure and composition, particularly the TiO loading, of the prepared hybrid aerogel membranes, allowing the development of photochemically stable aerogel materials with increased surface area/pore volume and higher photocatalytic activity.

View Article and Find Full Text PDF

Transdermal microneedle (MN) drug delivery patches, comprising water-soluble polymers, have played an essential role in diverse biomedical applications, but with limited development towards fast deep release or sustained delivery applications. The effectiveness of such MN delivery patches strongly depends on the materials from which they are constructed. Herein, we present a dual-action combinatorial programmable MN patch, comprising of fast and sustained-release MN zones, with tunable release kinetics towards delivering a wide range of therapeutics over different timeframes in single application.

View Article and Find Full Text PDF

An amphiphilic derivative of chitosan containing quaternary ammonium and myristoyl groups, herein named as ammonium myristoyl chitosan (DMCat), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and myristoyl chitosan (DMCh). The success of the modification was confirmed using Fourier-transform infrared spectroscopy (FTIR) and ¹H nuclear magnetic resonance (NMR) spectroscopy. The average degrees of alkylation and quaternization ( D Q ¯ ) were determined by using ¹H NMR and conductometric titration.

View Article and Find Full Text PDF