This study evaluates the anaerobic mesophilic mono- and co-digestion of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) plastic bottles as a proxy for rigid packaging materials. Initial tests showed a 97.3 ± 0.
View Article and Find Full Text PDFThe effect of alkali-based pretreatment on the methanization of bioplastics was investigated. The tested bioplastics included PHB [poly(3-hydroxybutyrate)], PHBH [poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)], PHBV [poly(3-hydroxybutyrate-co-3-hydroxyvalerate], PLA (polylactic acid), and a PLA/PCL [poly(caprolactone)] 80/20 blend. Prior to methanization tests, the powdered polymers (500-1000 μm) at a concentration of 50 g/L were subjected to alkaline pretreatment using NaOH 1 M for PLA and PLA/PCL, and NaOH 2 M for PHB-based materials.
View Article and Find Full Text PDFHarnessing fruit-vegetable waste (FVW) as a resource to produce hydrogen via dark fermentation (DF) embraces the circular economy concept. However, there is still a need to upgrade continuous FVW-DF bioprocessing to enhance hydrogen production rates (HPR). This study aims to investigate the influence of the hydraulic retention time (HRT) on the DF of FVW by mixed culture.
View Article and Find Full Text PDFThis study aims at investigating the influence of operational parameters on biohydrogen production from fruit-vegetable waste (FVW) via lactate-driven dark fermentation. Mesophilic batch fermentations were conducted at different pH (5.5, 6.
View Article and Find Full Text PDFThis study proposed a lactate-based two-stage anaerobic digestion (AD) process to enhance bioenergy production rate from food waste (FW) and investigated the effect of inoculum addition and culture pH on hydrolysis-acidogenesis and further methanization. A series of batch fermentations were performed with an enriched lactate-producing consortium and without inoculum addition under controlled (5.7) and uncontrolled pH (initial 6.
View Article and Find Full Text PDFThe biodegradation of PHB, PHBV, PBS, PBAT, PCL, PLA, and a PLA-PCL blend was compared under aerobic and anaerobic aqueous conditions assessing biodegradation kinetics, extent, carbon fate and particle size influence (in the range of 100-1000 µm). Under standard test conditions, PHB and PBHV were biodegraded anaerobically (83.9 ± 1.
View Article and Find Full Text PDFDark fermentation (DF) is one of the most promising biological methods to produce bio-hydrogen and other value added bio-products from carbohydrate-rich wastes and wastewater. However, process instability and low hydrogen production yields and rates have been highlighted as the major bottlenecks preventing further development. Numerous studies have associated such concerns with the inhibitory activity of lactate-producing bacteria (LAB) against hydrogen producers.
View Article and Find Full Text PDF