Publications by authors named "Leonardo G DE Lima"

Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious.

View Article and Find Full Text PDF

Ribosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates the short arms of human acrocentric chromosomes (13, 14, 15, 21, and 22), revealing large homologous regions that suggest ongoing recombination rather than simply being ancestral traits.
  • Using comprehensive data from the Human Pangenome Reference Consortium, the study identifies pseudo-homologous regions (PHRs) within these chromosomes, indicating frequent genetic exchanges between non-homologous sequences, which could lead to variations in genetic traits.
  • The findings support the idea that these regions are linked to Robertsonian translocations, indicating that modern genetic studies reaffirm old cytogenetic theories about chromosome interactions dating back 50 years.
View Article and Find Full Text PDF

Global climate change is expected to increasingly affect climate-sensitive sectors of society, such as the economy and environment, with significant impacts on water, energy, agriculture and fisheries. This is the case in South America, whose economy is highly dependent on the agricultural sector. Here, we analyzed the sensitivity of South American climate to positive extremes of Antarctic sea ice (ASI) extent and volume at continental and regional scales.

View Article and Find Full Text PDF

Satellite DNAs (SatDNA) are ubiquitously present in eukaryotic genomes and have been recently associated with several biological roles. Understanding the evolution and significance of SatDNA requires an extensive comparison across multiple phylogenetic depths. We combined the RepeatExplorer pipeline and cytogenetic approaches to conduct a comprehensive identification and analysis of the satellitome in 37 species from the genus Drosophila.

View Article and Find Full Text PDF

The formation of dense water masses at polar regions has been largely influenced by climate changes arising from global warming. In this context, based on ensemble simulations with a coupled model we evaluate the meridional shift of a climate signal (i.e.

View Article and Find Full Text PDF

Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome.

View Article and Find Full Text PDF

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding.

View Article and Find Full Text PDF

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.

View Article and Find Full Text PDF

Centromeric α-satellite repeats represent ~6% of the human genome, but their length and repetitive nature make sequencing and analysis of those regions challenging. However, centromeres are essential for the stable propagation of chromosomes, so tools are urgently needed to monitor centromere copy number and how it influences chromosome transmission and genome stability. We developed and benchmarked droplet digital PCR (ddPCR) assays that measure copy number for five human centromeric arrays.

View Article and Find Full Text PDF

The complete assembly of each human chromosome is essential for understanding human biology and evolution. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.

View Article and Find Full Text PDF

Satellite DNAs (satDNAs) are a ubiquitous feature of eukaryotic genomes and are usually the major components of constitutive heterochromatin. The satDNA, also known as the 359 bp satellite, is one of the most abundant repetitive sequences in and has been linked to several different biological functions. We investigated the presence and evolution of the satDNA in 16 genomes.

View Article and Find Full Text PDF

Repetitive DNAs are abundant fast-evolving components of eukaryotic genomes, which often possess important structural and functional roles. Despite their ubiquity, repetitive DNAs are poorly studied when compared with the genic fraction of genomes. Here, we took advantage of the availability of the sequenced genome of the common marmoset Callithrix jacchus to assess its satellite DNAs (satDNAs) and their distribution in Callitrichini.

View Article and Find Full Text PDF

Satellite DNAs (satDNAs) constitute large portion of eukaryote genomes, comprising non-protein-coding sequences tandemly repeated. They are mostly found in heterochromatic regions of chromosomes such as around centromere or near telomeres, in intercalary heterochromatin, and often in non-recombining segments of sex chromosomes. We examined the satellitome in the cricket Eneoptera surinamensis (2n = 9, neo-XXY, males) to characterize the molecular evolution of its neo-sex chromosomes.

View Article and Find Full Text PDF

Eukaryote genomes are replete with repetitive DNAs. This class includes tandemly repeated satellite DNAs (satDNA) which are among the most abundant, fast evolving (yet poorly studied) genomic components. Here, we used high-throughput sequencing data from three cactophilic species, , , and , to access and study their whole satDNA landscape.

View Article and Find Full Text PDF

Background: Species from the Paracoccidioides complex are thermally dimorphic fungi and the causative agents of paracoccidioidomycosis, a deep fungal infection that is the most prevalent systemic mycosis in Latin America and represents the most important cause of death in immunocompetent individuals with systemic mycosis in Brazil. We previously described the identification of eight new families of DNA transposons in Paracoccidioides genomes. In this work, we aimed to identify potentially active retrotransposons in Paracoccidioides genomes.

View Article and Find Full Text PDF

Cactophilic Drosophila species provide a valuable model to study gene-environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D.

View Article and Find Full Text PDF