Publications by authors named "Leonardo Fonseca Valadares"

Introduction: Purslane (Portulaca oleracea L.) is a non-conventional food plant used extensively in folk medicine and classified as a multipurpose plant species, serving as a source of features of direct importance to the agricultural and agri-industrial sectors. This species is considered a suitable model to study the mechanisms behind resistance to several abiotic stresses including salinity.

View Article and Find Full Text PDF

Unlabelled: Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane ( L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses.

View Article and Find Full Text PDF

The control of pests in agricultural systems is currently based on the widespread use of pesticides that efficiently control pests but have negative effects on the environment and humans. Thus, several studies have been conducted to develop alternative sustainable ways to control pests in agriculture. The use of semiochemicals presents a good alternative to develop a sustainable tool monitoring and control insect pests in crops areas.

View Article and Find Full Text PDF

Soil salinity is one abiotic stress that threatens agriculture in more than 100 countries. Gliricidia [Gliricidia sepium (Jacq.) Kunth] is a multipurpose tree known for its ability to adapt to a wide range of soils; however, its tolerance limits and responses to salt stress are not yet well understood.

View Article and Find Full Text PDF

This work compared the mechanisms of adsorption of carotenes from hybrid palm oil onto two kinds of bleaching earths widely used by industrial refiners (acid-activated and neutral). First, it was performed a deep characterization of adsorbent surfaces: acid activated adsorbent showed micropore volumes twice larger than the neutral. FTIR analysis of adsorbent after adsorption demonstrated that active site was Si-O-Si for both adsorbents.

View Article and Find Full Text PDF

Magnetic materials based on iron oxides are extensively designed for several biomedical applications. Heterogeneous polymerization processes are powerful tools for the production of tailored micro-sized and nanosized magneto-polymeric particles. Although several polymerization processes have been adopted along the years, suspension, emulsion and miniemulsion systems deserve special attention due to its ability to produce spherical polymer particles containing magnetic nanoparticles homogeneously dispersed into the polymer thermoplastic matrices.

View Article and Find Full Text PDF

Electron spectroscopy imaging is a powerful tool for the elucidation of colloidal particle morphology and microchemistry, but it normally requires the use of very thin samples, typically less than 50 nm, to avoid the effects of multiple scattering. This work shows that many aspects of the internal morphology of thick particles and aggregates and the chemical component distribution are revealed using low-energy-loss electron imaging in the transmission electron microscope, benefiting from multiple scattering as well as small but significant differences in the low-energy-loss spectra of aggregate constituents. Low-loss images reveal morphological details of thick aggregates made out of colloidal polymers (natural rubber and styrene-acrylic latex) and inorganic particles (silica, montmorillonite, and aluminum phosphate) at a spatial resolution close to that achieved in the bright-field images and much better than in the elemental maps, showing the advantages of the simultaneous use of low-loss images and standard thin-cut elemental maps.

View Article and Find Full Text PDF