Publications by authors named "Leonardo Fernandino"

In studies using representational similarity analysis (RSA) of fMRI data, the reliability of the neural representational dissimilarity matrix (RDM) is a limiting factor in the ability to detect neural correlates of a model. A common strategy for boosting neural RDM reliability is to employ repeated presentations of the stimulus set across imaging runs or sessions. However, little is known about how the benefits of stimulus repetition are affected by repetition suppression, or how they compare with the benefits of increasing the number of participants.

View Article and Find Full Text PDF
Article Synopsis
  • Tulving defined semantic memory as a large storehouse of meanings crucial for language and cognition, prompting various fields to research it with unique methods and terms.
  • The varied interpretations of key concepts like "concept" across disciplines create confusion, contributing to the replication crisis in psychology and impacting communication and theory development.
  • To address these issues, a multidisciplinary semantic glossary is being developed to provide clear definitions and foster shared understanding among researchers while acknowledging the challenges of bias and prescriptiveness.
View Article and Find Full Text PDF

The organization of semantic memory, including memory for word meanings, has long been a central question in cognitive science. Although there is general agreement that word meaning representations must make contact with sensory-motor and affective experiences in a non-arbitrary fashion, the nature of this relationship remains controversial. One prominent view proposes that word meanings are represented directly in terms of their experiential content (i.

View Article and Find Full Text PDF

Neuropsychological and neuroimaging studies provide evidence for a degree of category-related organization of conceptual knowledge in the brain. Some of this evidence indicates that body part concepts are distinctly represented from other categories; yet, the neural correlates and mechanisms underlying these dissociations are unclear. We expand on the limited prior data by measuring functional magnetic resonance imaging responses induced by body part words and performing a series of analyses investigating the cortical representation of this semantic category.

View Article and Find Full Text PDF

This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble.

View Article and Find Full Text PDF

The organization of semantic memory, including memory for word meanings, has long been a central question in cognitive science. Although there is general agreement that word meaning representations must make contact with sensory-motor and affective experiences in a non-arbitrary fashion, the nature of this relationship remains controversial. One prominent view proposes that word meanings are represented directly in terms of their experiential content (i.

View Article and Find Full Text PDF

Neuroimaging, neuropsychological, and psychophysical evidence indicate that concept retrieval selectively engages specific sensory and motor brain systems involved in the acquisition of the retrieved concept. However, it remains unclear which supramodal cortical regions contribute to this process and what kind of information they represent. Here, we used representational similarity analysis of two large fMRI datasets with a searchlight approach to generate a detailed map of human brain regions where the semantic similarity structure across individual lexical concepts can be reliably detected.

View Article and Find Full Text PDF

The nature of the representational code underlying conceptual knowledge remains a major unsolved problem in cognitive neuroscience. We assessed the extent to which different representational systems contribute to the instantiation of lexical concepts in high-level, heteromodal cortical areas previously associated with semantic cognition. We found that lexical semantic information can be reliably decoded from a wide range of heteromodal cortical areas in the frontal, parietal, and temporal cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding sentence-level meaning in the brain is a complex challenge, and recent research uses vector models to investigate brain activation patterns elicited by sentences.
  • This study focuses on how a deep learning model called InferSent, which creates unified sentence representations, outperforms traditional "bag-of-words" models that ignore sentence structure.
  • The findings suggest that semantic processing happens across multiple brain regions, indicating that there's not a single location for understanding sentence meanings, but rather a distributed network that integrates various components.
View Article and Find Full Text PDF

The brain is thought to combine linguistic knowledge of words and nonlinguistic knowledge of their referents to encode sentence meaning. However, functional neuroimaging studies aiming at decoding language meaning from neural activity have mostly relied on distributional models of word semantics, which are based on patterns of word co-occurrence in text corpora. Here, we present initial evidence that modeling nonlinguistic "experiential" knowledge contributes to decoding neural representations of sentence meaning.

View Article and Find Full Text PDF

Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood.

View Article and Find Full Text PDF

Unlabelled: The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation.

View Article and Find Full Text PDF

We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation.

View Article and Find Full Text PDF

Componential theories of lexical semantics assume that concepts can be represented by sets of features or attributes that are in some sense primitive or basic components of meaning. The binary features used in classical category and prototype theories are problematic in that these features are themselves complex concepts, leaving open the question of what constitutes a primitive feature. The present availability of brain imaging tools has enhanced interest in how concepts are represented in brains, and accumulating evidence supports the claim that these representations are at least partly "embodied" in the perception, action, and other modal neural systems through which concepts are experienced.

View Article and Find Full Text PDF

While major advances have been made in uncovering the neural processes underlying perceptual representations, our grasp of how the brain gives rise to conceptual knowledge remains relatively poor. Recent work has provided strong evidence that concepts rely, at least in part, on the same sensory and motor neural systems through which they were acquired, but it is still unclear whether the neural code for concept representation uses information about sensory-motor features to discriminate between concepts. In the present study, we investigate this question by asking whether an encoding model based on five semantic attributes directly related to sensory-motor experience - sound, color, visual motion, shape, and manipulation - can successfully predict patterns of brain activation elicited by individual lexical concepts.

View Article and Find Full Text PDF

Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing.

View Article and Find Full Text PDF

According to an influential view of conceptual representation, action concepts are understood through motoric simulations, involving motor networks of the brain. A stronger version of this embodied account suggests that even figurative uses of action words (e.g.

View Article and Find Full Text PDF

The problem of how word meaning is processed in the brain has been a topic of intense investigation in cognitive neuroscience. While considerable correlational evidence exists for the involvement of sensory-motor systems in conceptual processing, it is still unclear whether they play a causal role. We investigated this issue by comparing the performance of patients with Parkinson's disease (PD) with that of age-matched controls when processing action and abstract verbs.

View Article and Find Full Text PDF

The ability to draw analogies requires 2 key cognitive processes, relational integration and resolution of interference. The present study aimed to identify the neural correlates of both component processes of analogical reasoning within a single, nonverbal analogy task using event-related functional magnetic resonance imaging. Participants verified whether a visual analogy was true by considering either 1 or 3 relational dimensions.

View Article and Find Full Text PDF

The embodied cognition approach to the study of the mind proposes that higher order mental processes such as concept formation and language are essentially based on perceptual and motor processes. Contrary to the classical approach in cognitive science, in which concepts are viewed as amodal, arbitrary symbols, embodied semantics argues that concepts must be "grounded" in sensorimotor experiences in order to have meaning. In line with this view, neuroimaging studies have shown a roughly somatotopic pattern of activation along cortical motor areas (broadly construed) for the observation of actions involving different body parts, as well as for action-related language comprehension.

View Article and Find Full Text PDF

We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the stage of the process in which the distractor is affecting the decision about the target; and third, to determine whether the interaction between the lexicality of the target and the lexicality of the distractor ("lexical redundancy effect") is due to facilitation or inhibition of lexical processing. Unilateral and bilateral trials were presented in separate blocks.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: