The interplay between electronic and intramolecular high-frequency vibrational degrees of freedom is ubiquitous in natural light-harvesting systems. Recent studies have indicated that an intramolecular vibrational donor-acceptor frequency difference can enhance energy transport. Here, we analyze the extent to which different intramolecular donor-acceptor vibrational frequencies affect excitation energy transport in the natural nonequilibrium steady state configuration.
View Article and Find Full Text PDFPolaritonic chemistry has ushered in new avenues for controlling molecular dynamics. However, two key questions remain: (i) Can classical light sources elicit the same effects as certain quantum light sources on molecular systems? (ii) Can semiclassical treatments of light-matter interactions capture nontrivial quantum effects observed in molecular dynamics? This work presents a quantum-classical approach addressing issues of realizing cavity chemistry effects without actual cavities. It also highlights the limitations of the standard semiclassical light-matter interaction.
View Article and Find Full Text PDFOscillations in time-dependent two-dimensional electronic spectra appear as evidence of quantum coherence in light-harvesting systems related to electronic-vibrational resonant interactions. Nature, however, takes place in a non-equilibrium steady-state; therefore, the relevance of these arguments to the natural process is unclear. Here, we examine the role of intramolecular vibrations in the non-equilibrium steady-state of photosynthetic dimers in the natural scenario of incoherent light excitation.
View Article and Find Full Text PDFExperimental and theoretical evidence points out the crucial role of specific intramolecular vibrational modes resonant with excitonic splittings in the interpretation of long-lived coherences observed in the two-dimensional spectra of some natural and synthetic light harvesting complexes. For the natural situation of illumination by incoherent (sun)light, the relevance of these vibrations is analyzed here for light-harvesting vibronic prototype dimers. The detailed analysis of the density matrix dynamics reveals that the inclusion of intramolecular vibrational modes reinforces the exciton coherence up to one order of magnitude and may increase the populations of lowest energy single exciton states, as well as populations and coherences in the site basis.
View Article and Find Full Text PDF