Drug repurposing, also known as drug repositioning, involves identifying new applications for drugs whose effects in a disease are already established. Doxycycline, a broad-spectrum antibiotic belonging to the tetracycline class, has demonstrated potential activity against neurodegenerative diseases like Alzheimer's and Parkinson's. However, despite its promise, the repurposed use of doxycycline encounters challenges in reaching the brain in adequate concentrations to exert its effects.
View Article and Find Full Text PDFAedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against , the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Cellulose from bacteria is a high-purity biomaterial naturally produced by bacteria as part of their metabolic process. Although it inherently lacks antimicrobial activity, its modification with bioactive substances can significantly enhance its efficacy beyond that of the original compounds. This biomaterial features a unique ability to retain substantial quantities of liquids within its three-dimensional network, making it a prime candidate for biomedical applications.
View Article and Find Full Text PDFAlternative therapies associating natural products and nanobiotechnology show new perspectives on controlled drug release. In this context, nanoemulsions (NEs) present promising results for their structural design and properties. Hesperetin (HT), a flavonoid mainly found in citrus fruits, presents highlighted bone benefits.
View Article and Find Full Text PDFInt J Pharm
April 2024
Tuberculosis (TB) is an infectious disease that annually affects millions of people, and resistance to available antibiotics has exacerbated this situation. Another notable characteristic of Mycobacterium tuberculosis, the primary causative agent of TB, is its ability to survive inside macrophages, a key component of the immune system. In our quest for an effective and safe treatment that facilitates the targeted delivery of antibiotics to the site of infection, we have proposed a nanotechnology approach based on an iron chelator.
View Article and Find Full Text PDFBackground: Myrcene and cymene, aromatic monoterpenes found in plants and essential oils, possess distinctive aromatic qualities. However, their volatility and limited solubility pose challenges in precise handling and formulation. Meanwhile, nanoemulsions emerge as promising drug delivery systems, improving the bioavailability and stability of these active ingredients.
View Article and Find Full Text PDFThe development of insecticide resistance in mosquitoes of public health importance has encouraged extensive research into innovative vector control methods. Terpenes are the largest among Plants Secondary Metabolites and have been increasingly studied for their potential as insecticidal control agents. Although promising, terpenes are insoluble in water, and they show low residual life which limits their application for vector control.
View Article and Find Full Text PDFPlant-based insecticides offer advantages such as negligible residual effects, reduced risks to both humans and the environment, and immunity to resistance issues that plague conventional chemicals. However, the practical use of monoterpenes in insect control has been hampered by challenges including their poor solubility and stability in aqueous environments. In recent years, the application of nanotechnology-based formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles.
View Article and Find Full Text PDFGlioblastoma multiforme is the most common and aggressive malignant tumor that affects the central nervous system, with high mortality and low survival. Glioblastoma multiforme treatment includes resection tumor surgery, followed by radiotherapy and chemotherapy adjuvants. However, the drugs used in chemotherapy present some limitations, such as the difficulty of crossing the bloodbrain barrier and resisting the cellular mechanisms of drug efflux.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is a chronic inflammatory disorder, most known as ulcerative colitis (UC) and Crohn's disease (CD), that affects the gastrointestinal tract (GIT), causing considerable symptoms to millions of people around the world. Conventional therapeutic strategies have limitations and side effects, prompting the exploration of innovative approaches. Probiotics, known for their potential to restore gut homeostasis, have emerged as promising candidates for IBD management.
View Article and Find Full Text PDFLatent tuberculosis infection (LTBI) represents a subclinical, asymptomatic mycobacterial state affecting approximately 25% of the global population. The substantial prevalence of LTBI, combined with the risk of progressing to active tuberculosis, underscores its central role in the increasing incidence of tuberculosis (TB). Accurate identification and timely treatment are vital to contain and reduce the spread of the disease, forming a critical component of the global strategy known as "End TB.
View Article and Find Full Text PDFOral cancer is one of the most prevalent types of cancer head and neck cancers worldwide. Photodynamic therapy (PDT) has demonstrated great potential against cancers, reducing long-term morbidity. In this study, we investigated the incorporation of methylene blue (MB) in a mucoadhesive liquid crystal precursor system (LCPS) for oral cancer treatment.
View Article and Find Full Text PDFGliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells.
View Article and Find Full Text PDFIntroduction: Skin cancer is the most common form of cancer worldwide, with increasing incidence rates in recent years. Although conventional chemotherapy and radiation therapy have been used for its treatment, these therapies have several limitations such as lack of selectivity and significant side effects. Targeted nanocarriers have emerged as a promising approach for the treatment of skin cancer.
View Article and Find Full Text PDFThe development of rapamycin (RAP) and resveratrol (RSV) coloaded liposomes (RAP-RSV-LIP) for breast cancer therapy. Liposomes were prepared using a high-pressure homogenization technique and evaluated according to their physicochemical characteristics, cellular uptake and cytotoxicity against tumoral and normal cells. The RAP-RSV-LIP showed negative surface charge, size around 100 nm, low polydispersity and high encapsulation efficiency for RAP and RSV (58.
View Article and Find Full Text PDFGlioblastoma multiforme is the most common and most aggressive human brain cancer. GBM treatment is still a challenge because many drugs are not able to cross the blood-brain barrier, in addition to the increasing resistance to currently available chemotherapy. New therapeutic alternatives are emerging, and, in this context, we highlight kaempferol, a flavonoid with remarkable anti-tumor activity but with limited bioavailability due to its strong lipophilic property.
View Article and Find Full Text PDFDental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy.
View Article and Find Full Text PDFNanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs.
View Article and Find Full Text PDFVitamins are widely found in nature, for example, in plants and fruits. Ascorbic acid and nicotinamide are examples of these compounds that have potent antioxidant properties, besides stimulating collagen production and depigmenting properties that protect the skin from premature aging. To overcome the skin barrier and reduce the instability of antioxidant compounds, alternative systems have been developed to facilitate the delivery of antioxidants, making them efficiently available to the tissue for an extended time without causing damage or toxicity.
View Article and Find Full Text PDFThe anti-inflammatory 5-aminosalicylic acid (5-ASA) is the main therapeutic option used to prevent and treat inflammatory bowel diseases. The upper intestinal tract performs rapid and almost complete absorption of this drug when administered orally, making local therapeutic levels of the molecule in the inflamed colonic mucosa difficult to achieve. Micro and nanoparticle systems are promising for 5-ASA incorporation because the reduced dimensions of these structures can improve the drug's pharmacodynamics and contribute to more efficient and localized therapy.
View Article and Find Full Text PDFTemozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical properties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death.
View Article and Find Full Text PDFInfectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem.
View Article and Find Full Text PDFCancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms.
View Article and Find Full Text PDFInt J Pharm
April 2022
Glioblastoma multiforme (GBM) is the most common malignant brain cancer, characterized by high invasiveness and poor prognosis. Docetaxel (DTX) is a chemotherapeutic drug with promising anti-tumor properties. However, conventional intravenous formulations exhibit side effects of systemic biodistribution and low brain bioavailability, limiting their clinical use.
View Article and Find Full Text PDFEpirubicin (EPI) is a chemotherapeutic agent belonging to the anthracycline drug class indicated for treating several tumors. It acts by suppressing the DNA and RNA synthesis by intercalating between their base pair. However, several side effects are associated with this therapy, including cardiotoxicity and myelosuppression.
View Article and Find Full Text PDF