This study estimated the contribution of the midfoot joint complex (MJC) kinematics to the pelvis anterior-posterior positions during the stance phase of walking and investigated whether the MJC is functionally coordinated with the lower limb joints to maintain similar pelvic positions across steps. Hip, knee, ankle, and MJC sagittal angles were measured in 11 nondisabled participants during walking. The joints' contributions to pelvic positions were computed through equations derived from a link-segment model.
View Article and Find Full Text PDFTo verify if there is a difference in postural hypervigilance in sitting in individuals with and without low back pain. Additionally, to observe whether there is a difference in the perception of correct sitting posture between individuals with low back pain and without low back pain. The present study has a cross-sectional observational design, as a sample size of 92 individuals, later divided equally into two groups (with low back pain and without low back pain).
View Article and Find Full Text PDFThe purpose of this study was to investigate the angular kinetic energy transfers and expenditure among the trunk (bisegmented), the pelvis and the kick limb during maximal soccer instep kicking, and to characterize kicking kinetics and kinematics. Eighteen adult male amateur soccer players (24.0 ± 4.
View Article and Find Full Text PDFObjective: To investigate whether a common measure of sagittal pelvic torsion based on the superior iliac spines behave similarly to predictions of a rigid (non-torsioned) plane, when leg length discrepancies (LLD) are induced.
Method: Twenty-four young asymptomatic participants were subjected to pelvic posture measurements that use the anterior-superior iliac spines (ASISs) and posterior-superior iliac spines (PSISs) as references, while standing on level ground and with a one-, two- and three-centimeter lifts under the left foot. A special caliper with digital inclinometers was used.
Background: Strengthening of hip and trunk muscles can modify pelvis and hip movements. However, the varus alignment of the foot-ankle complex (FAC) may influence the effects of muscle strengthening, due to the relationship of FAC alignment with pelvic and hip kinematics. This study evaluated the effects of hip and trunk muscle strengthening on pelvis and hip kinematics during walking, in subgroups with larger and smaller values of FAC varus alignment.
View Article and Find Full Text PDF