Publications by authors named "Leonardo Clemente"

Article Synopsis
  • Accurate forecasts improve public health responses to seasonal influenza, with 26 teams providing predictions for hospital admissions in 2021-22 and 2022-23.
  • Six out of 23 models performed better than the baseline in 2021-22, while 12 out of 18 models did so in 2022-23, with the FluSight ensemble being highly ranked in both seasons.
  • Despite its accuracy, the FluSight ensemble and other models struggled with longer forecast periods, especially during times of rapid change in influenza patterns.
View Article and Find Full Text PDF

The novel coronavirus (COVID-19) pandemic, first identified in Wuhan China in December 2019, has profoundly impacted various aspects of daily life, society, healthcare systems, and global health policies. There have been more than half a billion human infections and more than 6 million deaths globally attributable to COVID-19. Although treatments and vaccines to protect against COVID-19 are now available, people continue being hospitalized and dying due to COVID-19 infections.

View Article and Find Full Text PDF

Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. Forecasting teams were asked to provide national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one through four weeks ahead for the 2021-22 and 2022-23 influenza seasons. Across both seasons, 26 teams submitted forecasts, with the submitting teams varying between seasons.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) continues to affect the world, and the design of strategies to curb disease outbreaks requires close monitoring of their trajectories. We present machine learning methods that leverage internet-based digital traces to anticipate sharp increases in COVID-19 activity in U.S.

View Article and Find Full Text PDF

The dengue virus affects millions of people every year worldwide, causing large epidemic outbreaks that disrupt people's lives and severely strain healthcare systems. In the absence of a reliable vaccine against dengue or an effective treatment to manage the illness in humans, most efforts to combat dengue infections have focused on preventing its vectors, mainly the Aedes aegypti mosquito, from flourishing across the world. These mosquito-control strategies need reliable disease activity surveillance systems to be deployed.

View Article and Find Full Text PDF

Transmission of dengue fever depends on a complex interplay of human, climate and mosquito dynamics, which often change in time and space. It is well known that its disease dynamics are highly influenced by multiple factors including population susceptibility to infection as well as by microclimates: small-area climatic conditions which create environments favourable for the breeding and survival of mosquitoes. Here, we present a novel machine learning dengue forecasting approach, which, dynamically in time and space, identifies local patterns in weather and population susceptibility to make epidemic predictions at the city level in Brazil, months ahead of the occurrence of disease outbreaks.

View Article and Find Full Text PDF

Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for this.

View Article and Find Full Text PDF

Background: The inherent difficulty of identifying and monitoring emerging outbreaks caused by novel pathogens can lead to their rapid spread; and if left unchecked, they may become major public health threats to the planet. The ongoing coronavirus disease (COVID-19) outbreak, which has infected over 2,300,000 individuals and caused over 150,000 deaths, is an example of one of these catastrophic events.

Objective: We present a timely and novel methodology that combines disease estimates from mechanistic models and digital traces, via interpretable machine learning methodologies, to reliably forecast COVID-19 activity in Chinese provinces in real time.

View Article and Find Full Text PDF

Non-pharmaceutical interventions (NPIs) have been crucial in curbing COVID-19 in the United States (US). Consequently, relaxing NPIs through a phased re-opening of the US amid still-high levels of COVID-19 susceptibility could lead to new epidemic waves. This calls for a COVID-19 early warning system.

View Article and Find Full Text PDF

We present a timely and novel methodology that combines disease estimates from mechanistic models with digital traces, via interpretable machine-learning methodologies, to reliably forecast COVID-19 activity in Chinese provinces in real-time. Specifically, our method is able to produce stable and accurate forecasts 2 days ahead of current time, and uses as inputs (a) official health reports from Chinese Center Disease for Control and Prevention (China CDC), (b) COVID-19-related internet search activity from Baidu, (c) news media activity reported by Media Cloud, and (d) daily forecasts of COVID-19 activity from GLEAM, an agent-based mechanistic model. Our machine-learning methodology uses a clustering technique that enables the exploitation of geo-spatial synchronicities of COVID-19 activity across Chinese provinces, and a data augmentation technique to deal with the small number of historical disease activity observations, characteristic of emerging outbreaks.

View Article and Find Full Text PDF

Background: Novel influenza surveillance systems that leverage Internet-based real-time data sources including Internet search frequencies, social-network information, and crowd-sourced flu surveillance tools have shown improved accuracy over the past few years in data-rich countries like the United States. These systems not only track flu activity accurately, but they also report flu estimates a week or more ahead of the publication of reports produced by healthcare-based systems, such as those implemented and managed by the Centers for Disease Control and Prevention. Previous work has shown that the predictive capabilities of novel flu surveillance systems, like Google Flu Trends (GFT), in developing countries in Latin America have not yet delivered acceptable flu estimates.

View Article and Find Full Text PDF