We present the first microscopic model for the chirality-induced spin selectivity effect in electron-transfer, in which the internal degrees of freedom of the chiral bridge are explicitly included. By exactly solving this model on short chiral chains we demonstrate that a sizable spin polarization on the acceptor arises from the interplay of coherent and incoherent dynamics, with strong electron-electron correlations yielding many-body states on the bridge as crucial ingredients. Moreover, we include the coherent and incoherent dynamics induced by interactions with vibrational modes and show that they can play an important role in determining the long-time polarized state probed in experiments.
View Article and Find Full Text PDFX-ray Diffraction has been fully exploited as a probe to investigate crystalline materials. However, very little research has been carried out to unveil its potentialities towards amorphous materials. In this work, we demonstrated the capabilities of Grazing Incidence X-ray Diffraction (GIXRD) as a simple and fast tool to obtain quantitative information about the composition of amorphous mixed oxides.
View Article and Find Full Text PDF