Publications by authors named "Leonardo Bhering"

Selecting parents and crosses is a critical step for a successful breeding program. The ability to design crosses with high means that will maintain genetic variation in the population is the goal for long-term applications. Herein, we describe a new computational package for mate allocation in a breeding program.

View Article and Find Full Text PDF

In soybean breeding programs, a great deal of time is devoted to the use of methods that perform selection of individual plants during the initial generations. Our hypothesis is that BLUPIS (simulated individual BLUP) can be efficient when applied in the initial stages of soybean breeding programs. This study aimed to explore the potential of BLUPIS in the early generations of a soybean breeding program, as well as to assess the viability of the strategy of dividing the useful area of experimental plots for estimating genotypic effects and plant selection.

View Article and Find Full Text PDF

Building models that allow phenotypic evaluation of complex agronomic traits in crops of global economic interest, such as grain yield (GY) in soybean and maize, is essential for improving the efficiency of breeding programs. In this sense, understanding the relationships between agronomic variables and those obtained by high-throughput phenotyping (HTP) is crucial to this goal. Our hypothesis is that vegetation indices (VIs) obtained from HTP can be used to indirectly measure agronomic variables in annual crops.

View Article and Find Full Text PDF

Understanding the genotype-by-environment interaction (GEI) and considering it in the selection process is a sine qua non condition for the expansion of Brazilian eucalyptus silviculture. This study's objective is to select high-performance and stable eucalyptus clones based on a novel selection index that considers the Factor Analytic Selection Tools (FAST) and the clone's reliability. The investigation explores the nuances interplay of GEI and extends its insights by scrutinizing the relationship between latent factors and real environmental features.

View Article and Find Full Text PDF

Genomic selection and doubled haploids hold significant potential to enhance genetic gains and shorten breeding cycles across various crops. Here, we utilized stochastic simulations to investigate the best strategies for optimize a sweet corn breeding program. We assessed the effects of incorporating varying proportions of old and new parents into the crossing block (3:1, 1:1, 1:3, and 0:1 ratio, representing different degrees of parental substitution), as well as the implementation of genomic selection in two distinct pipelines: one calibrated using the phenotypes of testcross parents (GSTC scenario) and another using F1 individuals (GSF1).

View Article and Find Full Text PDF

Sweet corn breeding programs, like field corn, focus on the development of elite inbred lines to produce commercial hybrids. For this reason, genomic selection models can help the prediction of hybrid crosses from the elite lines, which is hypothesized to improve the test cross scheme, leading to higher genetic gain in a breeding program. This study aimed to explore the potential of implementing genomic selection in a sweet corn breeding program through hybrid prediction in a within-site across-year and across-site framework.

View Article and Find Full Text PDF

Probabilistic models enhance breeding, especially for the Tahiti acid lime, a fruit essential to fresh markets and industry. These models identify superior and persistent individuals using probability theory, providing a measure of uncertainty that can aid the recommendation. The objective of our study was to evaluate the use of a Bayesian probabilistic model for the recommendation of superior and persistent genotypes of Tahiti acid lime evaluated in 12 harvests.

View Article and Find Full Text PDF

Objectives: to assess the predictive performance of different artificial intelligence algorithms to estimate bed bath execution time in critically ill patients.

Methods: a methodological study, which used artificial intelligence algorithms to predict bed bath time in critically ill patients. The results of multiple regression models, multilayer perceptron neural networks and radial basis function, decision tree and random forest were analyzed.

View Article and Find Full Text PDF

The selection of parents to originate promising base populations, as well as the knowledge of the gene effects controlling agronomic traits by means of diallel, are useful to drive genetic gains in Brazilian tropical wheat breeding programs. The goals of this study were to select tropical wheat parents with a high frequency of favorable alleles and segregating populations with high potential to originate superior progenies through partial diallel analysis. Thus, 14 parents were divided in two groups and crossed in a 7 × 7 partial diallel scheme to originate 49 F1 combinations.

View Article and Find Full Text PDF

Obtaining soybean genotypes that combine better nutrient uptake, higher oil and protein levels in the grains, and high grain yield is one of the major challenges for current breeding programs. To avoid the development of unpromising populations, selecting parents for crossbreeding is a crucial step in the breeding pipeline. Therefore, our objective was to estimate the combining ability of soybean cultivars based on the F generation, aiming to identify superior segregating parents and populations for agronomic, nutritional and industrial traits.

View Article and Find Full Text PDF

Spatial trends represent an obstacle to genetic evaluation in maize breeding. Spatial analyses can correct spatial trends, which allow for an increase in selective accuracy. The objective of this study was to compare the spatial (SPA) and non-spatial (NSPA) models in diallel multi-environment trial analyses in maize breeding.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide selection (GWS) is a powerful genetic breeding tool that enhances the efficiency and speed of breeding long-lived species, like Jatropha.
  • The study aimed to compare the effectiveness of GWS against traditional phenotypic selection over three harvest cycles by assessing the genetic values of a population derived from crosses among 42 parent plants.
  • Results showed that GWS outperformed phenotypic selection, achieving significant genetic gains of up to 346% and reducing the breeding cycle by 50%, although it requires a larger breeding population for optimal application.
View Article and Find Full Text PDF

Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests.

View Article and Find Full Text PDF

This study assessed the efficiency of Genomic selection (GS) or genome-wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.

View Article and Find Full Text PDF

Random regression models (RRM) are a powerful tool to evaluate genotypic plasticity over time. However, to date, RRM remains unexplored for the analysis of repeated measures in Jatropha curcas breeding. Thus, the present work aimed to apply the random regression technique and study its possibilities for the analysis of repeated measures in Jatropha curcas breeding.

View Article and Find Full Text PDF

An efficient and informative statistical method to analyze genotype-by-environment interaction (GxE) is needed in maize breeding programs. Thus, the objective of this study was to compare the effectiveness of multiple-trait models (MTM), random regression models (RRM), and compound symmetry models (CSM) in the analysis of multi-environment trials (MET) in maize breeding. For this, a data set with 84 maize hybrids evaluated across four environments for the trait grain yield (GY) was used.

View Article and Find Full Text PDF

Photosynthetic efficiency has become the target of several breeding programs since the positive correlation between photosynthetic rate and yield in soybean suggests that the improvement of photosynthetic efficiency may be a promising target for new yield gains. However, studies on combining ability of soybean genotypes for physiological traits are still scarce in the literature. The objective of this study was to estimate the combining ability of soybean genotypes based on F2 generation aiming to identify superior parents and segregating populations for physiological traits.

View Article and Find Full Text PDF

Asian soybean rust (Phakopsora pachyrhizi - ASR) is one of the major diseases that occur in soybean and causes great damage to commercial crops. Therefore, the goal of this work was to investigate the relationship between biochemical and photosyntetic parameters in soybean with ASR. Two experiments were performed in a randomized complete block with three treatments (water, Tween 20, and methyl jasmonate).

View Article and Find Full Text PDF
Article Synopsis
  • Jatropha curcas is a key biofuel species, and breeders face challenges with Genotype x Environment (GxE) interactions to improve selection accuracy in breeding.
  • This study analyzed 180 half-sib families over five years, focusing on estimating GxE variance, adaptability, and stability through methods like linear regression and mixed models.
  • Results showed that most families had good general adaptability and stability, with the harmonic mean of relative performance of genetic values (HMRPGV) yielding the highest selection gains and a prediction accuracy of 0.45 for the sixth year.
View Article and Find Full Text PDF

Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy.

View Article and Find Full Text PDF

To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs.

View Article and Find Full Text PDF

The objective of this study was to explore the potential of genomic prediction (GP) for soybean resistance against Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold (WM). A diverse panel of 465 soybean plant introduction accessions was phenotyped for WM resistance in replicated field and greenhouse tests.

View Article and Find Full Text PDF

Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability.

View Article and Find Full Text PDF

Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions.

View Article and Find Full Text PDF