Publications by authors named "Leonardo Andrade-Lima"

Chagas disease, caused by Trypanosoma cruzi, is an important global public health problem which, despite partial efficacy of benznidazole (Bz) in acute phase, urgently needs an effective treatment. Cardiotoxicity is a major safety concern for conduction of more accurate preclinical drug screening platforms. Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are a reliable model to study genetic and infectious cardiac alterations and may improve drug development.

View Article and Find Full Text PDF

BruUV-seq utilizes UV light to introduce transcription-blocking DNA lesions randomly in the genome prior to bromouridine-labeling and deep sequencing of nascent RNA. By inhibiting transcription elongation, but not initiation, pre-treatment with UV light leads to a redistribution of transcription reads resulting in the enhancement of nascent RNA signal towards the 5'-end of genes promoting the identification of transcription start sites (TSSs). Furthermore, transcripts associated with arrested RNA polymerases are protected from 3'-5' degradation and thus, unstable transcripts such as putative enhancer RNA (eRNA) are dramatically increased.

View Article and Find Full Text PDF

Chloroquine (CQ), a quinolone derivative widely used to treat and prevent malaria, has been shown to exert a potent adjuvant effect when combined with conventional glioblastoma therapy. Despite inducing lysosome destabilization and activating p53 in human glioma cells, the mechanisms underlying cell death induced by this drug are poorly understood. Here, we analyzed in a time- and dose-dependent manner, the effects of CQ upon mitochondria integrity, autophagy regulation and redox processes in four human glioma cell lines that differ in their resistance to this drug.

View Article and Find Full Text PDF

Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes.

View Article and Find Full Text PDF

The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5'-3' direction with slow recovery and TC-NER at the 3' end of long genes. RNA synthesis resumed fully at the 3'-end of genes after a 24 h recovery in wild-type fibroblasts, but not in cells deficient in transcription-coupled nucleotide excision repair (TC-NER) or global genomic NER (GG-NER).

View Article and Find Full Text PDF

Ultraviolet (UV) light can stall replication forks owing to the formation of bulky lesions in the DNA. Replication across these blocking lesions occurs through translesion DNA synthesis, and cells activate the ATR damage responses to UV. However, it remains unclear whether lesion bypass requires the replication checkpoint because ATR is not necessary for PCNA ubiquitylation.

View Article and Find Full Text PDF

Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.

View Article and Find Full Text PDF