Each year, 15 million people worldwide suffer from strokes. Consequently, researchers face increasing pressure to develop reliable behavioural tests for assessing functional recovery after a stroke. Our aim was to establish a new motor performance index that can be used to evaluate post-stroke recovery in both young and aged animals.
View Article and Find Full Text PDFSince stroke has limited treatment options, an active search for new therapeutic approaches is required. Initial excitement of using cell-based therapies to stimulate recovery processes in the ischemic brain turned into a more measured perspective, acknowledging obstacles related to the unfavorable environments associated in part with aging. Given the predominance of stroke in older populations, evaluating the effectiveness of cell therapies in aged brain environments is essential and clinically relevant.
View Article and Find Full Text PDFGlia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies.
View Article and Find Full Text PDFThe major aim of stroke therapies is to stimulate brain repair and to improve behavioral recuperation after cerebral ischemia. Despite remarkable advances in cell therapy for stroke, stem cell-based tissue replacement has not been achieved yet stimulating the search for alternative strategies for brain self-repair using the neurogenic zones of the brain, the dentate gyrus and the subventricular zone (SVZ). However, during aging, the potential of the hippocampus and the SVZ to generate new neuronal precursors, declines.
View Article and Find Full Text PDFStroke has limited restorative treatment options. In search of new therapeutic strategies for the ischemic brain, cell-based therapies offered new hope, which has been, in the meanwhile, converted into a more realistic approach recognizing difficulties related to unfavorable environments causing low survival rates of transplanted neuronal precursors. Stem cell therapies are based on the transplantation of neuronal precursor cells (NPCs), adult stem cells propagated in cell culture or inducible pluripotent cells (iPSCs) obtained from patients and trans-differentiated into neural cells.
View Article and Find Full Text PDF