Previous research has shown that a visual field consisting of as little as one peripherally located luminous line that is pitched from vertical in a dark field induces large changes in an observer's visually perceived eye level (VPEL). The effects of this severely reduced inducing stimulus are surprisingly close to the effects of a highly structured pitched visual field. In the present report we describe two experiments with inducing stimuli that were still further reduced to one or two linear arrays of points of light.
View Article and Find Full Text PDFThel frontoparallel orientation of a long peripheral line influences two visual norms, elevation, also called the visual perception of eye level (VPEL), and orientation in the frontoparallel plane, called visually perceived vertical (VPV). However, VPEL and VPV are distinct in that different integration rules describe the combinatorial effects of two lines symmetrically located on opposite sides of the median plane. Nevertheless, we propose that the same orientation-sensitive process underlies the two discriminations.
View Article and Find Full Text PDFAtten Percept Psychophys
July 2013
A pitched visual inducer has a strong effect on the visually perceived elevation of a target in extrapersonal space, and also on the elevation of the arm when a subject points with an unseen arm to the target's elevation. The manual effect is a systematic function of hand-to-body distance (Li and Matin Vision Research 45:533-550, 2005): When the arm is fully extended, manual responses to perceptually mislocalized luminous targets are veridical; when the arm is close to the body, gross matching errors occur. In the present experiments, we measured this hand-to-body distance effect during the presence of a pitched visual inducer and after inducer offset, using three values of hand-to-body distance (0, 40, and 70 cm) and two open-loop tasks (pointing to the perceived elevation of a target at true eye level and setting the height of the arm to match the elevation).
View Article and Find Full Text PDFA roll-tilted visual frame induced a vertical line to appear roll-tilted in the opposite direction (rod-and-frame illusion). This visual illusion was measured by finding the physical roll-tilt of the line that appeared vertical-visually perceived vertical (VPV). In separate measurements, the roll-tilted visual frame was also found to induce an illusion in the felt orientation of the hand.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2008
Although horizontal binocular retinal disparity between images in the two eyes resulting from their different views of the world has long been the centerpiece for understanding the unique characteristics of stereovision, it does not suffice to explain many binocular phenomena. Binocular depth contrast (BDC), the induction of an appearance of visual pitch in a centrally located line by pitched-from-vertical flanking lines, has particularly been the subject of a good deal of attention in this regard. In the present article, we show that BDC does not cross the median plane but is restricted to the side of the visual field containing a unilateral inducer.
View Article and Find Full Text PDFEarlier work described the presence of a significant connection between an individual's ability to disregard distracting aspects of a visual field in the classical rod-and-frame test (RFT), in which a subject is required to set a rod so that it will appear vertical in the presence of a square frame that is roll tilted from vertical, and in paper-and-pencil tests, in which the subject is required to find a hidden figure embedded in a more complex figure (the Embedded Figures Test [EFT]; see, e.g., Witkin, Dyk, Faterson, Goodenough, & Karp, 1962; Witkin et al.
View Article and Find Full Text PDFSince the discovery of the influence of the tilted frame on the visual perception of the orientation perceived as vertical (VPV), the frame has been treated as a unitary object-a Gestalt. We evaluated the effect of 1-line, 2-line, 3-line, and 4-line (square frame) stimuli of two different sizes, and asked whether the influence of the square frame on VPV is any greater than the additive combination of separate influences produced by the individual lines constituting the frame. We found that, for each size, the square frame is considerably less influential than the additive combination of the influences of the individual lines.
View Article and Find Full Text PDFWe report a series of nine experiments which show that a single roll-tilted line in darkness induces changes of the orientation perceived as vertical (VPV) that are similar in magnitude and direction to those measured by Witkin and Asch (1948a) [Studies in space orientation. I. Perception of the upright with displaced visual fields.
View Article and Find Full Text PDFMeasurements were made of the accuracy of open-loop manual pointing and height-matching to a visual target whose elevation was perceptually mislocalized. Accuracy increased linearly with distance of the hand from the body, approaching complete accuracy at full extension; with the hand close to the body (within the midfrontal plane), the manual errors equaled the magnitude of the perceptual mislocalization. The visual inducing stimulus responsible for the perceptual errors was a single pitched-from-vertical line that was long (50 degrees), eccentrically-located (25 degrees horizontal), and viewed in otherwise total darkness.
View Article and Find Full Text PDF