Publications by authors named "Leonard M Sidisky"

The present research deals with the collection and structural elucidation of an unknown component, accounting for about 35% of the essential oil obtained upon distillation of the leaves of Eugenia uniflora L., harvested during summer (January, 2017) in Paraná State (Southern Brazil). A multidimensional gas chromatographic preparative system, based on the coupling of three GC systems equipped with apolar, PEG and ionic liquid-based stationary phases, was successfully applied for the isolation of the chromatographic band relative to the unknown molecule.

View Article and Find Full Text PDF

Dicationic ionic liquids (DILs) are more and more accepted as a new class of high temperature and polar stationary phases for gas chromatography (GC). This study deals with the effect of seven different fluorosulfonyl derivatized anions associated with two dications: 1,3-di(3-methylimidazolium)-2-methylpropane [2mC(mim)], and 1,3-di(3-methylimidazolium)-isobutene [i-eneC(mim)]. Thermophysical properties of the 14 synthesized DILs were evaluated in terms of melting point, viscosity, and thermal stability.

View Article and Find Full Text PDF

Three phosphonium-based dicationic ionic liquids were synthesized as bis(trifluoromethylsulfonyl) imide salts. The three dications had a nonyl spacer between two identical phosphonium-substituted groups. The three phosphonium moieties were dipropyl(phenyl), diphenyl(propyl), and diphenyl(toluyl).

View Article and Find Full Text PDF

The authors would like to call the reader's attention to the fact that the original publication included some corrections needed to be addressed.

View Article and Find Full Text PDF

Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison.

View Article and Find Full Text PDF

Retention indices for 10 sets of alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) isomers (total of 80 PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry [length-to-breadth (L/B) and thickness (T)] were investigated for the following PASHs: 4 methyl-substituted dibenzothiophenes (DBTs), 3 ethyl-substituted DBTs, 15 dimethyl-substituted DBTs, 8 trimethyl-substituted DBTs, 15 methyl-substituted naphthothiophenes, 30 methyl-substituted benzonaphthothiophenes, and 5 methyl-substituted tetrapheno[1,12-bcd]thiophene. Correlation coefficients for retention on the 50% phenyl phase vs L/B ranged from r=-0.

View Article and Find Full Text PDF

Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e.

View Article and Find Full Text PDF

A modified Rheodyne 7520 microsample injector was used as a new solid phase microextraction (SPME)-liquid chromatography (LC) interface. The modification was focused on the construction of a new sample rotor, which was built by gluing two sample rotors together. The new sample rotor was further reinforced with 3 pieces of stainless steel tubing.

View Article and Find Full Text PDF

Due to their distinct chemical properties, the application of ionic liquid (IL) compounds as gas chromatography (GC) stationary phases offer unique GC separation especially in the analysis of geometric and positional fatty acid methyl ester (FAME) isomers. Elution behaviour of FAME on several commercialised IL capillary columns including phosphonium based SLB-IL59, SLB-IL60, SLB-IL61 and SLB-IL76 and imidazolium based SLB-IL82, SLB-IL100, and SLB-IL111 as well as a general purpose column SLB-5ms, were evaluated in gas chromatography-mass spectrometry (GC-MS) analysis. The phases were further characterised by using a linear solvation energy relationship (LSER) approach according to the equivalent chain length (ECL) index of FAME.

View Article and Find Full Text PDF

Modifications were made on commercial SPME fiber assembly and SPME-LC interface to improve the applicability of SPME for LC. Polyacrylonitrile (PAN)/C18 bonded fuse silica was used as the fiber coating for LC applications because the fiber coating was not swollen in common LC solvents at room temperature. The inner tubing of SPME fiber assembly was replaced with a 457 μm outside diameter (o.

View Article and Find Full Text PDF

Furaneol is an important aroma compound. It is very difficult to extract furaneol from food matrices and separate it on a gas chromatography column due to its high polarity and instability. A new quantitative method was developed to quantify furaneol in aqueous samples by the use of derivatization/solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS).

View Article and Find Full Text PDF

Biocompatible C18-polyacrylonitrile (PAN) coating was used as the extraction phase for an automated 96-blade solid phase microextraction (SPME) system with thin-film geometry. Three different methods of coating preparation (dipping, brush painting, and spraying) were evaluated; the spraying method was optimum in terms of its stability and reusability. The high-throughput sample preparation was achieved by using a robotic autosampler that enabled simultaneous preparation of 96 samples in 96-well-plate format.

View Article and Find Full Text PDF

Trigonal tricationic ionic liquids (ILs) are a new class of ILs that appear to be unique when used as gas chromatographic stationary phases. They consist of four core structures; (1) A = mesitylene core, (2) B = benzene core, (3) C = triethylamine core, and (4) D = tri(2-hexanamido)ethylamine core; to which three identical imidazolium or phosphonium cationic moieties were attached. These were coated on fused silica capillaries, and their gas chromatographic properties were evaluated.

View Article and Find Full Text PDF