Publications by authors named "Leonard M Anderson"

Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions.

View Article and Find Full Text PDF

The Iroquois homeobox (Irx5) gene is essential in embryonic development and cardiac electrophysiology. Although recent studies have reported that IRX5 protein is involved in regulation of the cell cycle and apoptosis in prostate cancer cells, little is known about the role of IRX5 in the adult vasculature. Here we report novel observations on the role of IRX5 in adult vascular smooth muscle cells (VSMCs) during proliferation in vitro and in vivo.

View Article and Find Full Text PDF

Angiogenesis is a dynamic process required for embryonic development. However, postnatal vascular growth is characteristic of multiple disease states. Despite insights into the multistep process in which adhesion molecules, extracellular matrix proteins, growth factors, and their receptors work in concert to form new vessels from the preexisting vasculature, there remains a lack of insight of the nuclear transcriptional mechanisms that occur within endothelial cells (ECs) in response to VEGF.

View Article and Find Full Text PDF

The way in which multiple cell types organize themselves into a carefully sculpted, 3D labyrinth of vessels that regulate blood flow throughout the body has been a longstanding mystery. Clinicians familiar with congenital cardiovascular disease recognize how genetic variants and modest perturbations in this complex set of spatiotemporal interactions and stochastic processes can result in life-threatening anomalies. Although the mystery is not yet fully solved, we are poised at an exciting juncture, as insights from murine disease models are converging with advances in human genetics to shed new light on puzzling clinical phenotypes of vascular disease.

View Article and Find Full Text PDF

The renin-angiotensin-aldosterone system controls blood pressure and salt-volume homeostasis. Renin, which is the first enzymatic step of the cascade, is critically regulated at the transcriptional level. In the present study, we investigated the role of liver X receptor alpha (LXR(alpha)) and LXR(beta) in the regulation of renin.

View Article and Find Full Text PDF

We have reported previously that liver X receptor-alpha (LXRalpha) can mediate a novel cAMP-dependent increase in renin and c-myc gene transcription by binding as a monomer to a unique regulatory element termed the cAMP-negative response element (CNRE). To determine whether this novel action of LXRalpha has global implications on gene regulation, we employed expression profiling to identify other genes regulated by this unique mechanism. Here we report the existence of a set of known and unknown transcripts regulated in parallel with renin.

View Article and Find Full Text PDF