Kinases play critical roles in synaptic and neuronal changes involved in the formation of memory. However, significant gaps exist in the understanding of how interactions among kinase pathways contribute to the mechanistically distinct temporal domains of memory ranging from short-term memory to long-term memory (LTM). Activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathways are critical for long-term enhancement of neuronal excitability (LTEE) and long-term synaptic facilitation (LTF), essential processes in memory formation.
View Article and Find Full Text PDFAt the University of Texas Houston Medical School, a rotational dissection system was introduced to improve coordination between the Gross Anatomy and the Introduction to Clinical Medicine (ICM) courses. Six students were assigned to each cadaver and divided into two teams. For each laboratory, one team was assigned to dissect and the other to attend ICM or study independently.
View Article and Find Full Text PDFMutations in the gene encoding CREB-binding protein (CBP) cause deficits in long-term plasticity, learning, and memory. Here, long-term synaptic facilitation (LTF) at Aplysia sensorimotor synapses in cell culture was used as a model system to investigate methods for overcoming deficits in LTF produced by a CBP knockdown. Injecting CBP-siRNA into individual sensory neurons reduced CBP levels and impaired LTF produced by a standard protocol of five 5-min pulses of serotonin (5-HT) delivered at 20 min interstimulus intervals.
View Article and Find Full Text PDFLearning and memory are influenced by the temporal pattern of training stimuli. However, the mechanisms that determine the effectiveness of a particular training protocol are not well understood. We tested the hypothesis that the efficacy of a protocol is determined in part by interactions among biochemical cascades that underlie learning and memory.
View Article and Find Full Text PDFSerotonin (5-HT)-induced long-term facilitation (LTF) of the Aplysia sensorimotor synapse depends on enhanced gene expression and protein synthesis, but identification of the genes whose expression and regulation are necessary for LTF remains incomplete. In this study, we found that one such gene is synapsin, which encodes a synaptic vesicle-associated protein known to regulate short-term synaptic plasticity. Both synapsin mRNA and protein levels were increased by 5-HT.
View Article and Find Full Text PDFAccumulating evidence suggests that the transcriptional activator cAMP response element-binding protein 1 (CREB1) is important for serotonin (5-HT)-induced long-term facilitation (LTF) of the sensorimotor synapse in Aplysia. Moreover, creb1 is among the genes activated by CREB1, suggesting a role for this protein beyond the induction phase of LTF. The time course of the requirement for CREB1 synthesis in the consolidation of long-term facilitation was examined using RNA interference techniques in sensorimotor cocultures.
View Article and Find Full Text PDFLong-term memory and plasticity, including long-term synaptic facilitation (LTF) of the Aplysia sensorimotor synapse, depend on the activation of transcription factors that regulate genes necessary for synaptic plasticity. In the present study we found that treatment with 5-HT and behavioral training produce biphasic changes in the expression of CREB2, a transcriptional repressor. An immediate increase in CREB2 protein was followed by a subsequent decrease.
View Article and Find Full Text PDFSynapsin is a synaptic vesicle-associated protein implicated in the regulation of vesicle trafficking and transmitter release, but its role in heterosynaptic plasticity remains elusive. Moreover, contradictory results have obscured the contribution of synapsin to homosynaptic plasticity. We previously reported that the neuromodulator serotonin (5-HT) led to the phosphorylation and redistribution of Aplysia synapsin, suggesting that synapsin may be a good candidate for the regulation of vesicle mobilization underlying the short-term synaptic plasticity induced by 5-HT.
View Article and Find Full Text PDFTransforming growth factor beta-1 (TGF-beta1) plays important roles in the early development of the nervous system and has been implicated in neuronal plasticity in adult organisms. It induces long-term increases in sensory neuron excitability in Aplysia as well as a long-term enhancement of synaptic efficacy at sensorimotor synapses. In addition, TGF-beta1 acutely regulates synapsin phosphorylation and reduces synaptic depression induced by low-frequency stimuli.
View Article and Find Full Text PDFPresent models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia.
View Article and Find Full Text PDFWithdrawal reflexes of Aplysia are mediated in part by a monosynaptic circuit of sensory (SN) and motor (MN) neurons. A brief high-frequency burst of spikes in the SN produces excitatory postsynaptic potentials (EPSPs) that rapidly decrease in amplitude during the burst of activity. It is generally believed that this and other (i.
View Article and Find Full Text PDFOnly a small fraction of neurotransmitter-containing synaptic vesicles (SVs), the readily releasable pool, is available for fast Ca(2+)-induced release at any synapse. Most SVs are sequestered at sites away from the plasma membrane and cannot be exocytosed directly. Recruitment of SVs to the releasable pool is thought to be an important component of short-term synaptic facilitation by serotonin (5-HT) at Aplysia sensorimotor synapses.
View Article and Find Full Text PDF