Polymers (Basel)
September 2024
Poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL), two biodegradable and biocompatible polymers that are commonly used for biomedical applications, are, respectively, the result of the ring-opening polymerization of LA and ε-CL, cyclic esters, which can be produced according to several mechanisms (cationic, monomer-activated cationic, anionic, and coordination-insertion), except for L-lactide, which is polymerized only by anionic, cationic, or coordination-insertion polymerization. A series of well-defined PLLA-b-PCL block copolymers have been obtained starting from the same PLLA homopolymer, having a molar mass of 2500 g·mol, and being synthesized by coordination-insertion in the presence of tin octoate. PCL blocks were obtained via a cationic-activated monomer mechanism to limit transesterification reactions, and their molar masses varied from 1800 to 18,500 g·mol.
View Article and Find Full Text PDFThis study describes the comparison between the interaction of a series of peptide-functionalized chitosan-based nanocapsules and liposomes with two cell lines, i.e., mouse macrophages RAW 264.
View Article and Find Full Text PDFLung infections, such as: pneumonia, chronic obstructive cystic fibrosis, tuberculosis are generally caused by viruses, bacteria and fungi. As these infections are very difficult to treat, new therapeutic approaches are investigated in order to maximize the efficiency of the treatment and to reduce the major complications that can occur. The main objective of this study was focused on the preparation of drug-loaded peptides-functionalized microcapsules, obtained by a double emulsion, based on carboxylated chitosan (CMCS), poly(vinyl alcohol) (PVA) and an activator [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride] (DMT-MM), for the dual active targeting and treatment of pulmonary infections.
View Article and Find Full Text PDFDegradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided.
View Article and Find Full Text PDFThe definition of the term biopolymer is often controversial, and there is no clear distinction between "biopolymers", "bioplastics", and "bio-based polymers" [...
View Article and Find Full Text PDFHydrogels are a favorable alternative to accelerate the burn wound healing process and skin regeneration owing to their capability of absorbing contaminated exudates. The bacterial infections that occur in burn wounds might be treated using different topically applied materials, but bacterial resistance to antibiotics has become a major problem worldwide. Therefore, the use of non-antibiotic treatments represents a major interest in current research.
View Article and Find Full Text PDFAmylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg ions. The obtained hydrogel particles were characterized physicochemically and morphologically.
View Article and Find Full Text PDFIn this study we have employed a polymer processing method based on solvent vapor annealing in order to condense relatively large amounts of solvent vapors onto thin films of block copolymers and thus to promote their self-assembly into ordered nanostructures. As revealed by the atomic force microscopy, a periodic lamellar morphology of poly(2-vinylpyridine)--polybutadiene and an ordered morphology comprised of hexagonally-packed structures made of poly(2-vinylpyridine)--poly(cyclohexyl methacrylate) were both successfully generated on solid substrates for the first time.
View Article and Find Full Text PDFPolymeric microcapsules are extensively investigated as drug delivery systems for a broad range of applications. In the present study, Dexamethasone-loaded carboxylated chitosan (CCS)/poly (vinyl alcohol) (PVA)-based microcapsules were prepared in view of their potential administration by inhalation for the treatment of lung diseases. The crosslinking between PVA and CCS was activated by [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride] (DMT-MM) and the FTIR results proved the formation of ester bonds between the two polymers.
View Article and Find Full Text PDFThis study focuses on the retting effect on the mechanical properties of flax biobased materials. For the technical fiber, a direct link was established between the biochemical alteration of technical flax and their mechanical properties. In function of the retting level, technical fibers appeared smoother and more individualized; nevertheless, a decrease in the ultimate modulus and maximum stress was recorded.
View Article and Find Full Text PDFThe development of accurate drug delivery systems is one of the main challenges in the biomedical field. A huge variety of structures, such as vesicles, nanoparticles, and nanofibers, have been proposed as carriers for bioactive agents, aiming for precision in administration and dosage, safety, and bioavailability. This review covers the use of electrohydrodynamic techniques both for the immobilization and for the synthesis of vesicles in a non-conventional way.
View Article and Find Full Text PDFThe quest for sustainable biomaterials with excellent biocompatibility and tailorable properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production costs and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials.
View Article and Find Full Text PDFPharmaceutics
January 2023
Stimuli-responsive copolymers are of great interest for targeted drug delivery. This study reports on a controllable post-polymerization quaternization with 2-bromomethyl-4-fluorophenylboronic acid of the poly(4-vinyl pyridine) (P4VP) block of a common poly(styrene)--poly(4-vinyl pyridine)--poly(ethylene oxide) (SVE) triblock terpolymer in order to achieve a selective responsivity to various diols. For this purpose, a reproducible method was established for P4VP block quaternization at a defined ratio, confirming the reaction yield by B, H NMR.
View Article and Find Full Text PDFThe effect of hydroxyapatite (HAp) synthesized by the chemical precipitation process on the morphology and properties of composites based on poly(lactic acid) (PLA) was investigated at various filler content ratios, i.e., 5, 10 and 15 wt%.
View Article and Find Full Text PDFSynthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B).
View Article and Find Full Text PDFSelf-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents.
View Article and Find Full Text PDFBiodegradable polymers contain chains that are hydrolytically or enzymatically cleaved, resulting in soluble degradation products. Biodegradability is particularly desired in biomedical applications, in which degradation of the polymer ensures clearance from the body and eliminates the need for retrieval or explant. In this study, a homologues series of poly(ε-caprolactone)-b-poly(ethylene adipate)-b-poly(ε-caprolactone) (PCL-b-PEA-b-PCL) block copolymers, with constant PEA molar mass and different PCL sequence lengths was obtained.
View Article and Find Full Text PDFGlaucoma is the second leading cause of blindness in the world. Despite the fact that many treatments are currently available for eye diseases, the key issue that arises is the administration of drugs for long periods of time and the increased risk of inflammation, but also the high cost of eye surgery. Consequently, numerous daily administrations are required, which reduce patient compliance, and even in these conditions, the treatment of eye disease is too ineffective.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) are in the vapor state in the atmosphere and are considered pollutants. Density functional theory (DFT) calculations with the wb97xd exchange correlation functional and the 6-311+G(d,p) basis set are carried out to explore the potential possibility of palladium-doped single-walled carbon nanotubes (Pd/SWCNT-V), serving as the resource for detecting and/or adsorbing acetonitrile (ACN), styrene (STY), and perchloroethylene (PCE) molecules as VOCs. The suggested adsorbent in this study is discussed with structural parameters, frontier molecular orbital theory, molecular electrical potential surfaces (MEPSs), natural bond orbital (NBO) analyses, and the density of states.
View Article and Find Full Text PDFBacterial oral diseases are chronic, and, therefore, require appropriate treatment, which involves various forms of administration and dosing of the drug. However, multimicrobial resistance is an increasing issue, which affects the global health system. In the present study, a commercial amphiphilic copolymer, Pluronic F127, was used for the encapsulation of 1-(5'-nitrobenzimidazole-2'-yl-sulphonyl-acetyl)-4-aryl-thiosemicarbazide, which is an original active pharmaceutical ingredient (API) previously synthesized and characterized by our group, at different copolymer/API weight ratios.
View Article and Find Full Text PDFDrug delivery is an important field of nanomedicine, and its aim is to deliver specific active substances to a precise site of action in order to produce a desired pharmacological effect. In the present study nanocapsules were obtained by a process of interfacial condensation between chitosan (dissolved in the aqueous phase) and poly(-vinyl pyrrolidone--itaconic anhydride), a highly reactive copolymer capable of easily opening the anhydride ring under the action of amine groups of chitosan. The formed amide bonds led to the formation of a hydrogel membrane.
View Article and Find Full Text PDFPolyvinyl alcohol (PVA) is a non-toxic biosynthetic polymer. Due to the hydrophilic properties of the PVA, its utilization is an easy tool to modify the properties of materials inducing increased hydrophilicity, which can be noticed in the surface properties of the materials, such as wettability. Based on this motivation, we proposed to obtain high-performance composite materials by a facile synthetic method that involves the cross-linking process of polyvinyl alcohol (PVA) with and aldehyde-functionalized polysulfone(mPSF) precursor, prior to incorporation of modified MWCNTs with hydrophilic groups, thus ensuring a high compatibility between the polymeric and the filler components.
View Article and Find Full Text PDFCancer is associated with a high level of morbidity and mortality, and has a significant economic burden on health care systems around the world in almost all countries due to poor living and nutritional conditions. In recent years, with the development of nanomaterials, research into the drug delivery system has become a new field of cancer treatment. With increasing interest, much research has been obtained on carbon-based nanomaterials (CBNs); however, their use has been limited, due to their impact on human health and the environment.
View Article and Find Full Text PDFHydrogels based on natural and synthetic polymers and inorganic nanoparticles proved to be a viable strategy in the fight against some Gram-positive and Gram-negative bacteria. Additionally, numerous studies have demonstrated the advantages of using ZnO nanoparticles in medicine due to their high antibacterial efficacy and relatively low cost. Consequently, the purpose of our study was to incorporate ZnO nanoparticles into chitosan/poly (vinyl alcohol)-based hydrogels in order to obtain a biocomposite with antimicrobial properties.
View Article and Find Full Text PDFBrain cancers, mainly high-grade gliomas/glioblastoma, are characterized by uncontrolled proliferation and recurrence with an extremely poor prognosis. Despite various conventional treatment strategies, viz., resection, chemotherapy, and radiotherapy, the outcomes are still inefficient against glioblastoma.
View Article and Find Full Text PDF