Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties.
View Article and Find Full Text PDFIn this study, the effects of three diamine curing agents (aromatic, cycloaliphatic, aliphatic) on the photochemical behavior of bisphenol A diglycidyl ether networks were comparatively examined. In order to monitor structural changes and study the curing agents' action mode, the cured epoxy resins were characterized before and after photoirradiation by means of Fourier-transform infrared spectroscopy, contact angle, differential scanning calorimetry, scanning electron microscopy, and energy-dispersive X-ray analysis, mass loss, and color modification measurements. Water absorption tests were also conducted.
View Article and Find Full Text PDFThe paper focuses on the advances in the field of pain treatment by transdermal delivery of specific drugs. Starting from a short description of the skin barrier, the pharmacodynamics and pharmacokinetics including absorption, distribution, action mechanism, metabolism and toxicity, aspects related to the use of pain therapy drugs are further discussed. Most recent results on topical anesthetic agents as well as the methods proved to overcome the skin barrier and to provide efficient delivery of the drug are also discussed.
View Article and Find Full Text PDF