Publications by authors named "Leonard E Post"

Small cell lung cancer (SCLC) is one of the most aggressive forms of cancer, with a 5-year survival <7%. A major barrier to progress is the absence of predictive biomarkers for chemotherapy and novel targeted agents such as PARP inhibitors. Using a high-throughput, integrated proteomic, transcriptomic, and genomic analysis of SCLC patient-derived xenografts (PDXs) and profiled cell lines, we identified biomarkers of drug sensitivity and determined their prevalence in patient tumors.

View Article and Find Full Text PDF

We discovered and developed a novel series of tetrahydropyridophthlazinones as poly(ADP-ribose) polymerase (PARP) 1 and 2 inhibitors. Lead optimization led to the identification of (8S,9R)-47 (talazoparib; BMN 673; (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one). The novel stereospecific dual chiral-center-embedded structure of this compound has enabled extensive and unique binding interactions with PARP1/2 proteins.

View Article and Find Full Text PDF

Purpose: PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties.

Experimental Design: Potency and selectivity of BMN 673 was determined by biochemical assays.

View Article and Find Full Text PDF

The RAS/RAF signaling pathway is an important mediator of tumor cell proliferation and angiogenesis. The novel bi-aryl urea BAY 43-9006 is a potent inhibitor of Raf-1, a member of the RAF/MEK/ERK signaling pathway. Additional characterization showed that BAY 43-9006 suppresses both wild-type and V599E mutant BRAF activity in vitro.

View Article and Find Full Text PDF

Recognition of the importance of the Raf pathway in the proliferation and survival of tumor cells recently increased with the discovery of activating BRAF mutations in human tumors. Therefore, in addition to a role in controlling tumors with Ras mutations and activated growth factor receptors, inhibitors of the Raf pathway may harbor therapeutic potential in tumors carrying a BRAF oncogene. A variety of agents have been discovered that interfere with the Raf pathway, including antisense oligonucleotides and small molecules.

View Article and Find Full Text PDF

Adenoviruses can be engineered to replicate selectively in tumor cells but inefficiently in normal cells. ONYX-015 (CI-1042, dl1520; Onyx Pharmaceuticals Inc), which replicates selectively in cells deficient in the p53 pathway, was the first such adenovirus to reach clinical testing. Multiple trials of ONYX-015 in over 300 cancer patients, and trials with other selectively replicating adenoviruses, have established the safety of this approach.

View Article and Find Full Text PDF