Publications by authors named "Leonard Dick"

Micro- and nanoplastics can interact with various biologically active compounds forming aggregates of which the effects have yet to be understood. To this end, it is vital to characterize these aggregates of key compounds and micro- and nanoplastics. In this study, we examined the adsorption of the antibiotic tetracycline on four different nanoplastics, made of polyethylene (PE), polypropylene (PP), polystyrene (PS), and nylon 6,6 (N66) through chemical computation.

View Article and Find Full Text PDF

To understand the behavior of ionic liquids (ILs) at carbon material, i.e., carbon nanotube (CNT)-containing pores, we simulated different systems and analyzed their structural─in particular their coordination─behavior as well as their velocity distribution.

View Article and Find Full Text PDF

Modeling of complex liquids at solid surfaces and in confinement is gaining attention due to an increase in computer power and advancement of simulation techniques. Therefore, tools to set up structures and for analysis are needed. In this paper, we present CONAN─a Python code designed to facilitate the study of liquids interacting with solid structures, such as walls or pores.

View Article and Find Full Text PDF

Several amino-acid based imidazolium ILs are investigated through the use of molecular dynamics (AIMD), which includes full polarization. The electric dipole moment distribution and polarization is used as a means of characterizing and understanding these complex systems. Various charge scheme methods were analyzed (Wannier function, Blöchl, Löwdin and Mulliken charge schemes and Voronoi tessellation) to determine their ability to predict dipole moments.

View Article and Find Full Text PDF