Pyrimidino-thiazolyl carbonitriles were prepared that are potent VEGFR-2 (KDR) kinase inhibitors. The modification of lead structures resulted in 3m which exhibited the best overall profile in KDR inhibitory activity, iv/po pharmacokinetics, and reduced hERG affinity.
View Article and Find Full Text PDFA series of N-(1,3-thiazol-2-yl)pyridin-2-amine KDR kinase inhibitors have been developed that possess optimal properties. Compounds have been discovered that exhibit excellent in vivo potency. The particular challenges of overcoming hERG binding activity and QTc increases in vivo in addition to achieving good pharmacokinetics have been acomplished by discovering a unique class of amine substituents.
View Article and Find Full Text PDFAn azo-dye lead was modified to a novel N-(1,3-thiazol-2-yl)pyridin-2-amine series of KDR kinase inhibitors through the use of rapid analog libraries. This new class has been found to be potent, selective, and of low molecular weight. Molecular modeling has postulated an interesting conformational preference and binding mode for these compounds in the active site of the enzyme.
View Article and Find Full Text PDF2,4-Disubstituted pyrimidines were synthesized as a novel class of KDR kinase inhibitors. Evaluation of the SAR of the screening lead compound 1 (KDR IC(50)=105 nM, Cell IC(50)=8% inhibition at 500 nM) led to the potent 3,5-dimethylaniline derivative 2d (KDR IC(50)=6 nM, cell IC(50)=19 nM).
View Article and Find Full Text PDF