Publications by authors named "Leona Nease"

Article Synopsis
  • - Selenocysteine-containing proteins are crucial for maintaining redox balance, and their production relies on a specific modification of tRNA called Um34, which is facilitated by the methyltransferase FTSJ1.
  • - The absence of Um34 causes issues during translation, leading to problems like ribosomal stalling and reduced efficiency in translating selenocysteine at the UGA stop codon.
  • - Cells lacking FTSJ1 show increased sensitivity to oxidative stress and lower melanoma metastasis, indicating that FTSJ1 and Um34 modification are vital for the antioxidant response and could be targeted for therapeutic purposes.
View Article and Find Full Text PDF

Metastasizing cancer cells encounter a multitude of stresses throughout the metastatic cascade. Oxidative stress is known to be a major barrier for metastatic colonization, such that metastasizing cancer cells must rewire their metabolic pathways to increase their antioxidant capacity. NADPH is essential for regeneration of cellular antioxidants and several NADPH-regenerating pathways have been shown to play a role in metastasis.

View Article and Find Full Text PDF

Epitranscriptomic modification of tRNA has recently gained traction in the field of cancer biology. The presence of such modifications on tRNA appears to allow for translational control of processes central to progression and malignant transformation. Methyltransferase Like 1 protein (METTL1), along with other epitranscriptomic writers (e.

View Article and Find Full Text PDF

Infiltration of immune cells into the tumor microenvironment (TME) can regulate growth and survival of neoplastic cells, impacting tumorigenesis and tumor progression. Correlations between the number of effector immune cells present in a tumor and clinical outcomes in many human tumors, including breast, have been widely described. Current immunotherapies utilizing checkpoint inhibitors or co-stimulatory molecule agonists aim to activate effector immune cells.

View Article and Find Full Text PDF

8-Hydroxyquinolines (HQ), including clioquinol, possess cytotoxic properties and are widely used as ligands for metal-based anticancer drug research. The number and identity of substituents on the HQ can have a profound effect on activity for a variety of inorganic compounds. Ruthenium complexes of HQ exhibit radically improved potencies, and operate by a new, currently unknown, mechanism of action.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the least treatable type of brain tumor, afflicting over 15,000 people per year in the United States. Patients have a median survival of 16 months, and over 95% die within 5 years. The chemokine receptor ACKR3 is selectively expressed on both GBM cells and tumor-associated blood vessels.

View Article and Find Full Text PDF

Ruthenium complexes capable of light-triggered cytotoxicity are appealing potential prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). Two groups of Ru(II) polypyridyl complexes with 2-(2-pyridyl)-benzazole ligands were synthesized and investigated for their photochemical properties and anticancer activity to compare strained and unstrained systems that are likely to have different biological mechanisms of action. The structure-activity relationship was focused on the benzazole core bioisosterism and replacement of coligands in Ru(II) complexes.

View Article and Find Full Text PDF
Article Synopsis
  • Light-activated compounds, especially ruthenium polypyridyl complexes, have medical potential by allowing control of biological effects through light activation, inducing cytotoxicity in targeted treatments.
  • A study on various Ru(II) complexes showed that those with strain-inducing methyl groups could bond to biomolecules upon light activation, while unstrained complexes primarily generated reactive oxygen species (ROS).
  • Results indicated that strained complexes were more photoactive and cytotoxic than their unstrained counterparts, with specific ligand modifications enhancing activation by red light and photolabile complexes proving to be more effective in killing cells.
View Article and Find Full Text PDF

Cytochrome P450s are key players in drug metabolism, and overexpression in tumors is associated with significant resistance to many medicinal agents. Consequently, inhibition of P450s could serve as a strategy to restore drug efficacy. However, the widespread expression of P450s throughout the human body and the critical roles they play in various biosynthetic pathways motivates the development of P450 inhibitors capable of controlled local administration.

View Article and Find Full Text PDF