In this paper, we propose a novel approach for the kinematic calibration of collaborative redundat robots, focusing on improving their precision using a cost-effective and efficient method. We exploit the redundancy of the closed-loop kinematic chain by utilizing a spherical joint, enabling precise definition of the robot end-effector position while maintaining free joint motion in the null space. Leveraging the availability of joint torque sensors in most collaborative robots, we employ a kinesthetic approach to obtain constrained joint motion for calibration.
View Article and Find Full Text PDF