Hydroxycinnamic acids, known for their health benefits and widespread presence in plant-based food, undergo complex transformations during high-temperature processing. Recent studies revealed a high browning potential of hydroxycinnamic acids and reactive Maillard reaction intermediates, but the role of phenolic compounds in the early stage of these reactions is not unambiguously understood. Therefore, we investigated the influence of caffeic acid and ferulic acid on the nonenzymatic browning of arabinose, galactose, and/or alanine, focusing on the implications on the formation of relevant early-stage Maillard intermediates and phenol-deriving products.
View Article and Find Full Text PDFThe Maillard reaction is a vital part of food processing, involving a vast number of complex reaction pathways, resulting in high-molecular-weight colorants. So far, studies have been focused on the conversion of carbohydrates and amino compounds, but the literature elaborating the contribution of phenolic compounds to the formation of the colored end-products is still rare. The aim of this study was to characterize early reactions, underlying the formation of phenol-containing melanoidins.
View Article and Find Full Text PDFThe Maillard reaction is well known for producing antioxidant compounds alongside colored substances. Low-molecular-weight antioxidant intermediates such as maltol (MAL) or norfuraneol (NF) are well described, but it is still unclear which of these Maillard intermediates are the precursors of antioxidant and colored melanoidins-the so-called late stage Maillard reaction products. This study aimed to provide novel insights into the correlation between browning potential and antioxidant properties of reaction products formed during the heat treatment of prominent Maillard reaction intermediates.
View Article and Find Full Text PDFThe browning of plant-based food is commonly understood to result from the enzymatic polymerization of phenolic compounds to pigments, called melanin. However, during the thermal treatment of food, enzymes are deactivated, and non-enzymatic reactions predominate. The extent of the contribution of phenolic compounds to these non-enzymatic reactions has been speculated ("melanin-like vs.
View Article and Find Full Text PDF