In the context of upcoming large-scale surveys like Euclid, the necessity for the automation of strong lens detection is essential. While existing machine learning pipelines heavily rely on the classification probability (P), this study intends to address the importance of integrating additional metrics, such as Information Content (IC) and the number of pixels above the segmentation threshold ([Formula: see text]), to alleviate the false positive rate in unbalanced data-sets. In this work, we introduce a segmentation algorithm (U-Net) as a supplementary step in the established strong gravitational lens identification pipeline (Denselens), which primarily utilizes [Formula: see text] and [Formula: see text] parameters for the detection and ranking.
View Article and Find Full Text PDFThe Dark Ages and Cosmic Dawn are largely unexplored windows on the infant Universe (z ~ 200-10). Observations of the redshifted 21-cm line of neutral hydrogen can provide valuable new insight into fundamental physics and astrophysics during these eras that no other probe can provide, and drives the design of many future ground-based instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Array (HERA). We review progress in the field of high-redshift 21-cm Cosmology, in particular focussing on what questions can be addressed by probing the Dark Ages at z > 30.
View Article and Find Full Text PDFThe local expansion rate of the Universe is parametrized by the Hubble constant, [Formula: see text], the ratio between recession velocity and distance. Different techniques lead to inconsistent estimates of [Formula: see text] Observations of Type Ia supernovae (SNe) can be used to measure [Formula: see text], but this requires an external calibrator to convert relative distances to absolute ones. We use the angular diameter distance to strong gravitational lenses as a suitable calibrator, which is only weakly sensitive to cosmological assumptions.
View Article and Find Full Text PDF