Publications by authors named "Leon Schlosser"

Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis, as its use for enantioselective reactions has gathered significant interest over the last decades. Concurrent to this development, machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two decades have showed an increased interest from the community.

View Article and Find Full Text PDF

Due to the magnitude of chemical space, the discovery of novel substrates in energy transfer (EnT) catalysis remains a daunting task. Experimental and computational strategies to identify compounds that successfully undergo EnT-mediated reactions are limited by their time and cost efficiency. To accelerate the discovery process in EnT catalysis, we herein present the EnTdecker platform, which facilitates the large-scale virtual screening of potential substrates using machine-learning (ML) based predictions of their excited state properties.

View Article and Find Full Text PDF