Background: Predicting and explaining species occurrence using environmental characteristics is essential for nature conservation and management. Species distribution models consider species occurrence as the dependent variable and environmental conditions as the independent variables. Suitable conditions are estimated based on a sample of species observations, where one assumes that the underlying environmental conditions are known.
View Article and Find Full Text PDFRed Lists are widely used as an indicator of the status and trends of biodiversity and are often used in directing conservation efforts. However, it is unclear whether species with a Least Concern status share a common relationship to environmental correlates compared to species that are on the Red List. To assess this, we focus here on the contribution and correlates of land use, climate, and soil to the occurrence of wild bees in the Netherlands.
View Article and Find Full Text PDFWhile shifts to high-intensity land cover have caused overwhelming biodiversity loss, it remains unclear how important natural land cover is to the occurrence, and thus the conservation, of different species groups. We used over 4 million plant species' observations to evaluate the conservation importance of natural land cover by its association with the occurrence probability of 1 122 native and 403 exotic plant species at 1 km resolution by species distribution models. We found that 74.
View Article and Find Full Text PDFBumblebees are ubiquitous, cold-adapted eusocial bees found worldwide from subarctic to tropical regions of the world. They are key pollinators in most temperate and boreal ecosystems, and both wild and managed populations are significant contributors to agricultural pollination services. Despite their broad ecological niche at the genus level, bumblebee species are threatened by climate change, particularly by rising average temperatures, intensifying seasonality and the increasing frequency of extreme weather events.
View Article and Find Full Text PDFIn a warming climate, species are expected to shift their geographical ranges to higher elevations and latitudes, and if interacting species shift at different rates, networks may be disrupted. To quantify the effects of ongoing climate change, repeating historical biodiversity surveys is necessary. In this study, we compare the distribution of a plant-pollinator community between two surveys 115 years apart (1889 and 2005-06), reporting distribution patterns and changes observed for bumblebee species and bumblebee-visited plants in the Gavarnie-Gèdre commune in the Pyrenees, located in southwest Europe at the French-Spanish border.
View Article and Find Full Text PDFSpecies can respond differently when facing environmental changes, such as by shifting their geographical ranges or through plastic or adaptive modifications to new environmental conditions. Phenotypic modifications related to environmental factors have been mainly explored along latitudinal gradients, but they are relatively understudied through time despite their importance for key ecological interactions. Here we hypothesize that the average bumblebee queen body size has changed in Belgium during the last century.
View Article and Find Full Text PDFBumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees.
View Article and Find Full Text PDFSpecies distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model.
View Article and Find Full Text PDF