J Synchrotron Radiat
September 2024
X-ray waveguides are routinely used at synchrotron light sources in imaging setups and as a platform for experiments with quantum emitters, providing nanometer-sized confinement - even x-ray optics on a chip has been showcased. X-ray waveguides are weakly guiding and experience significant material absorption, such that the established waveguide theory is not immediately applicable. Here, a general self-contained nano-optical theory of planar waveguides is derived, which is appropriate for hard x-ray energies.
View Article and Find Full Text PDFBased on phase retrieval, lensless coherent imaging and in particular holography offers quantitative phase and amplitude images. This is of particular importance for spectral ranges where suitable lenses are challenging, such as for hard x-rays. Here, we propose a phase retrieval approach for inline x-ray holography based on Tikhonov regularization applied to the full nonlinear forward model of image formation.
View Article and Find Full Text PDFIncoherent diffractive imaging (IDI) promises structural analysis with atomic resolution based on intensity interferometry of pulsed X-ray fluorescence emission. However, its experimental realization is still pending and a comprehensive theory of contrast formation has not been established to date. Explicit expressions are derived for the equal-pulse two-point intensity correlations, as the principal measured quantity of IDI, with full control of the prefactors, based on a simple model of stochastic fluorescence emission.
View Article and Find Full Text PDFPropagation-based phase-contrast X-ray imaging is by now a well established imaging technique, which - as a full-field technique - is particularly useful for tomography applications. Since it can be implemented with synchrotron radiation and at laboratory micro-focus sources, it covers a wide range of applications. A limiting factor in its development has been the phase-retrieval step, which was often performed using methods with a limited regime of applicability, typically based on linearization.
View Article and Find Full Text PDF