Introduction: Few studies have evaluated the presence of Post COVID-19 conditions (PCC) in people from Latin America, a region that has been heavily afflicted by the COVID-19 pandemic. In this study, we describe the frequency, co-occurrence, predictors, and duration of 23 symptoms in a cohort of Mexican patients with PCC.
Methods: We prospectively enrolled and followed adult patients hospitalized for severe COVID-19 at a tertiary care centre in Mexico City.
Background: Respiratory failure in severe coronavirus disease 2019 (COVID-19) is associated with a severe inflammatory response. Acetylcholine (ACh) reduces systemic inflammation in experimental bacterial and viral infections. Pyridostigmine increases the half-life of endogenous ACh, potentially reducing systemic inflammation.
View Article and Find Full Text PDFThe cholinergic system is present in both bacteria and mammals and regulates inflammation during bacterial respiratory infections through neuronal and non-neuronal production of acetylcholine (ACh) and its receptors. However, the presence of this system during the immunopathogenesis of pulmonary tuberculosis (TB) and in its causative agent () has not been studied. Therefore, we used an experimental model of progressive pulmonary TB in BALB/c mice to quantify pulmonary ACh using high-performance liquid chromatography during the course of the disease.
View Article and Find Full Text PDFTuberculosis (TB) is currently the deadliest infectious disease worldwide. Failure to create a highly effective vaccine has limited the control of the TB epidemic. Historically, the vaccine field has relied on the paradigm that IFN-γ-mediated CD4+ T cell memory responses are the principal correlate of protection in TB.
View Article and Find Full Text PDFRecent studies suggest that catecholamines (CAs) and acetylcholine (ACh) play essential roles in the crosstalk between microbes and the immune system. Host cholinergic afferent fibers sense pathogen-associated molecular patterns and trigger efferent cholinergic and catecholaminergic pathways that alter immune cell proliferation, differentiation, and cytokine production. On the other hand, microbes have the ability to produce and degrade ACh and also regulate autogenous functions in response to CAs.
View Article and Find Full Text PDF