Publications by authors named "Leon Gradon"

Halloysite particles, with their unique multilayer nanostructure, are demonstrated here as highly efficient and readily available sorbent of heavy metals that can be easily scaled up and used in large-scale water remediation facilities. The various methods of raw material purification were applied, and their effects were verified using techniques such as BET isotherm (determination of specific surface area and size of pores), XRF analysis (composition), and SEM imaging (determination of morphology). A series of adsorption experiments for aqueous solutions of metal ions (i.

View Article and Find Full Text PDF

In this work, we coated polypropylene (PP) fibrous filters with sulfonated pentablock copolymer (s-PBC) layers and tested them for the removal of cationic organic dyes, such as methylene blue (MB), and heavy metal ions (Fe3+ and Co2+) from water by adsorption and filtration experiments. Some of the coated filters were irradiated by UV light before being exposed to contaminated water and then were tested with unirradiated filters in the same adsorption and filtration experiments. Polymer-coated filters showed high efficiency in removing MB from an aqueous solution in both absorption and filtration processes, with 90% and 80% removal, respectively.

View Article and Find Full Text PDF

In this work, raw halloysite mineral from Dunino (Poland) has been characterized and tested as an efficient and low-cost adsorbent for dye removal from water. The morphology and structure of this clay were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the chemical composition was evaluated by means of X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), and electron energy loss spectroscopy (EELS). The results showed that it is made up of both platy and tubular structures, mainly composed of Si, Al, and O.

View Article and Find Full Text PDF

Biological contamination is a typical issue in water treatment. Highly concentrated microbial suspensions in a water flow may cause filter occlusion and biofilm formation, affecting the lifespan and quality of water purification systems and increasing the risk of nosocomial infections. In order to contrast the biofilm formation, most of the conventional strategies rely on the water chemical modification and/or on the use of filters functional coatings.

View Article and Find Full Text PDF

Nowadays heavy metals are among the higher environmental priority pollutants, therefore, the identification of new, effective, reusable and easy-to-handle adsorbent materials able to remove metal ions from water is highly desired. To this aim, in this work for the first time, sulfonated pentablock copolymer (s-PBC, Nexar™) membranes and s-PBC/graphene oxide (GO) nanocomposite membranes were investigated for the removal of heavy metals from water. Membranes were prepared by drop casting and their chemical, structural and morphological properties were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic mechanical analysis (DMA) and small-angle X-ray scattering (SAXS).

View Article and Find Full Text PDF

Studies on self-assembly of colloidal nanoparticles during formation of nanostructured particles by spray-drying methods have attracted a large amount of attention. Understanding the self-assembly phenomenon allows the creation of creative materials with unique structures that may offer performance improvements in a variety of applications. However, current research on the self-assembly of colloidal nanoparticles have been conducted only on uncharged droplet systems.

View Article and Find Full Text PDF

Effects of benzo[a]pyrene (BaP) on the surface properties of dipalmitoyl phosphatidylcholine (DPPC) being the basic component of pulmonary surfactant and lipid membranes were studied experimentally and analyzed by molecular dynamics simulations. Isotherms and surface compressibility of mixed BaP/DPPC monolayers on water were determined using Langmuir-Wilhelmy film balance. It was demonstrated that BaP induced concentration-dependent deviations from the initial surface activity of the phospholipid film and a noticeable decrease of its fluidity.

View Article and Find Full Text PDF

Background: The effectiveness of aerosol therapy is significantly reduced by the mucus layer covering the airways of the tracheobronchial tree. According to the present concept, drug particles are delivered to the lung together with the functional carrier particle that facilitates both the drug transport into the lungs and the penetration of deposited particles through the mucus. The approach of manufacturing multi-component powders with mucoactive compounds and anti-asthmatic medicines (DSCG) bound together in a single particle is additionally considered.

View Article and Find Full Text PDF

The kinetics of the collisions between droplet and the fiber is being studied in both theoretical and numerical way. During theoretical investigations the balances between the various components of total energy of the droplet have been used. As a result, we have obtained the conditions (expressed in terms of non-dimensional parameters characterizing the system) at which the deposition of the droplet on the fiber or the separation of the droplet from the fiber occurs.

View Article and Find Full Text PDF

The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system.

View Article and Find Full Text PDF

One of the reasons for cellular changes in the lung tissue exposed to the diesel exhaust composed of soot particles with adsorbed volatile organic molecules is the reduction of the clearance rate in the pulmonary region of the respiratory system. The interaction of the fractal-like particles and organic substances with a surfactant monolayer limits its dynamic activity. The surface properties of Survanta, a purified extract of bovine lung surfactant (LS), which interacted with carbon particles (200 nm aggregates) and benzo[a]pyrene (BaP), molecules were measured with the oscillating bubble technique.

View Article and Find Full Text PDF

Nanoparticles with well-defined chemical compositions can act as building blocks for the construction of functional structures, such as highly ordered aggregates, as well as porous and hollow aggregates. In this work, a spray-drying technique is used to form a crystal-like structure with nanoparticle building blocks. When spray-drying uniform spherical particles, tightly packed aggregates with either simple or broken symmetries (quasicrystalline) were formed.

View Article and Find Full Text PDF

Hyaluronic acid (HA) porous particles with controllable porosity and pore size, ranging from 100 to 300 nm, were successfully prepared using a colloidal templating and spray-drying method. HA powder and polystyrene latex (PSL) particles, which were used as the precursor and templating agent, respectively, were mixed in aqueous solution and spray-dried using a two-fluid nozzle system to produce HA and PSL composite particles. Water was evaporated during spray-drying using heated air with a temperature of 120 degrees C.

View Article and Find Full Text PDF

Comparison of experimental and computational results of aerosol deposition in the oro-pharyngeal cast of human published recently (Sosnowski TR, Moskal A, Gradoń L. (2006) Inhal Toxicol; 18: 773-780) demonstrated the applicability and relevance of considering realistic breathing patterns in analysis of aerosol flow and deposition within the human head airways. This issue is extended in the current paper, focused on a detailed analysis of spatial and temporal distribution of particle deposition in the oro-pharynx during inspiration.

View Article and Find Full Text PDF

Aerosol flow and deposition in the model of human oropharynx was studied theoretically and experimentally for two realistic inspiratory patterns. The three-dimensional (3D) airflow structure in the sample geometry was solved with the computational fluid dynamics (CFD) code (Fluent), used to calculate dynamic distribution of particle deposition (0.3-10 mum).

View Article and Find Full Text PDF

Toxicity of diesel exhaust is related to the inhalation of nano-sized fractal-like aerosol aggregates. Their complex behavior (in comparison to spherical particles) should be taken into account in deposition modeling. The deposition of aerosol fractal-like aggregates in the model of a human nose was studied numerically for the flow rate corresponding to breathing conditions.

View Article and Find Full Text PDF

During inhalation anesthesia, lung alveolar and Clara cells are exposed directly to volatile anesthetic. Porcine-derived natural lung surfactant (Curosurf) was used for in vitro measurements of surface activity under exposure to N2O mixed with air at concentration used in prolonged anesthesia. The study suggests that prolonged use of N2O may be associated with increased value of the minimum surface tension and reduction of surface tension-bubble radius hysteresis obtained in the pulsating bubble surfactometer used in the experiments.

View Article and Find Full Text PDF

The control of the morphology of nanostructured particles prepared by the spray drying of nanoparticle sol was investigated experimentally and the results are qualitatively explained based on available theory. A theoretical analysis indicates that the structural stability of the droplet and the hydrodynamic effects during the drying process play important roles in controlling the morphology of the resulting particles. The size of the sol in the droplet, droplet size, viscosity of droplet, drying temperature, gas flow rate, and addition of surfactant are all crucial parameters that affect the morphology of particles.

View Article and Find Full Text PDF

The rate of oxygen transport from atmospheric air into water and perfluorocarbon compound (PFC) was investigated. Static and dynamic systems with and without the presence of the lung surfactant monolayer were considered. For the case of water used as an oxygen absorbent, the monolayer activity allowed a simulation of the gas uptake into the lung hypophase.

View Article and Find Full Text PDF