Semiconductor spin qubits offer the potential to employ industrial transistor technology to produce large-scale quantum computers. Silicon hole spin qubits benefit from fast all-electrical qubit control and sweet spots to counteract charge and nuclear spin noise. However, the demonstration of a two-qubit interaction has remained an open challenge.
View Article and Find Full Text PDFThe spin-orbit interaction in spin qubits enables spin-flip transitions, resulting in Rabi oscillations when an external microwave field is resonant with the qubit frequency. Here, we introduce an alternative driving mechanism mediated by the strong spin-orbit interactions in hole spin qubits, where a far-detuned oscillating field couples to the qubit phase. Phase-driving at radio frequencies, orders of magnitude slower than the microwave qubit frequency, induces highly nontrivial spin dynamics, violating the Rabi resonance condition.
View Article and Find Full Text PDFWe experimentally determine isotropic and anisotropic g-factor corrections in lateral GaAs single-electron quantum dots. We extract the Zeeman splitting by measuring the tunnel rates into the individual spin states of an empty quantum dot for an in-plane magnetic field with various strengths and directions. We quantify the Zeeman energy and find a linear dependence on the magnetic field strength that allows us to extract the g factor.
View Article and Find Full Text PDFQuantum computers promise to execute complex tasks exponentially faster than any possible classical computer, and thus spur breakthroughs in quantum chemistry, material science and machine learning. However, quantum computers require fast and selective control of large numbers of individual qubits while maintaining coherence. Qubits based on hole spins in one-dimensional germanium/silicon nanostructures are predicted to experience an exceptionally strong yet electrically tunable spin-orbit interaction, which allows us to optimize qubit performance by switching between distinct modes of ultrafast manipulation, long coherence and individual addressability.
View Article and Find Full Text PDFWe show that in-plane magnetic-field-assisted spectroscopy allows extraction of the in-plane orientation and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs lateral quantum dot with subnanometer precision. The method is based on measuring the orbital energies in a magnetic field with various strengths and orientations in the plane of the 2D electron gas. From such data, we deduce the microscopic confinement potential landscape and quantify the degree by which it differs from a harmonic oscillator potential.
View Article and Find Full Text PDFUnderstanding and control of the spin relaxation time T is among the key challenges for spin-based qubits. A larger T is generally favored, setting the fundamental upper limit to the qubit coherence and spin readout fidelity. In GaAs quantum dots at low temperatures and high in-plane magnetic fields B, the spin relaxation relies on phonon emission and spin-orbit coupling.
View Article and Find Full Text PDFPurpose: Cataract surgery requires the removal of a circular segment of the anterior lens capsule (LC) by manual or femtosecond laser (FL) capsulotomy. Tears in the remaining anterior LC may compromise surgical outcome. We investigated whether biophysical differences in the rim properties of the LC remaining in the patient after manual or FL capsulotomy (FLC) lead to different risks with regard to anterior tear formation.
View Article and Find Full Text PDFBasement membranes (BMs) are thin sheets of extracellular matrix that outline epithelia, muscle fibers, blood vessels and peripheral nerves. The current view of BM structure and functions is based mainly on transmission electron microscopy imaging, in vitro protein binding assays, and phenotype analysis of human patients, mutant mice and invertebrata. Recently, MS-based protein analysis, biomechanical testing and cell adhesion assays with in vivo derived BMs have led to new and unexpected insights.
View Article and Find Full Text PDF