Publications by authors named "Leon Black"

The valorisation of waste or by-products in Portland clinker production is a promising alternative for developing sustainable cements. The complexity of the chemical reactions during clinkering demands an adequate dosing method that considers the effect of feedstock impurities to maximise the potential substitution of natural resources by waste or by-products, while guaranteeing the clinker reactivity requirements. This study proposes a raw meal proportioning methodology for optimising co-processing of natural feedstocks with alternative raw materials in clinker production, intending to reduce the content of natural raw materials needed, while promoting an optimal clinker reactivity.

View Article and Find Full Text PDF

Oil-Based Mud (OBM) cutting is a hazardous by-product generated during oil-well drilling. Its chemical composition suggests that it might be suitable as a raw material in cement manufacturing. It is rich in calcium oxide, silica, and aluminium oxide, which are the major oxides in raw materials for cement manufacturing.

View Article and Find Full Text PDF

This paper examines the potential treatment by solidification/stabilisation (S/S) of air pollution control (APC) residues using only waste materials otherwise bound for disposal, namely a pulverised fuel ash (PFA) from a co-fired power station and a waste caustic solution. The use of waste materials to stabilise hazardous wastes in order to meet waste acceptance criteria (WAC) would offer an economical and efficient method for reducing the environmental impact of the hazardous waste. The potential is examined against leach limits for chlorides, sulphates and total dissolved solids, and compressive strength performance described in the WAC for stable non-reactive (SNR) hazardous waste landfill cells in England and Wales.

View Article and Find Full Text PDF

A nanostructured, porous material was prepared by heterocoagulation of negatively charged montmorillonite with positively charged synthetic spherical hematite particles. The process of heterocoagulation of such particles was monitored by turbidimetric titrations over the pH range 2.5-7.

View Article and Find Full Text PDF