Generally, activated carbons demonstrated a notable ability to capture long-chain PFAS, but exhibited relatively lower effectiveness for short-chain PFAS. Thirteen commercially available activated carbons in Japan underwent testing for their adsorption capacity of PFAS in water. The activated carbon derived from rice husk, Triporous™-PFAS, exhibited the highest adsorption capacity (over 95%) for PFAS from ultrashort-chain (perfluorocarbon chain: C1 for perfluorocarboxylic acid (PFCA) and C2 for perfluoroalkane sulfonic acid (PFSA)) to long-chain PFAS (C13 for PFCA and C10 for PFSA).
View Article and Find Full Text PDFResearch on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison.
View Article and Find Full Text PDFThe ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis.
View Article and Find Full Text PDFOrganofluorines occur in human serum as complex mixtures of known and unidentified compounds. Human biomonitoring traditionally uses targeted analysis to measure the presence of known and quantifiable per- and polyfluoroalkyl substances (PFAS) in serum, yet characterization of exposure to and quantification of PFAS are limited by the availability of methods and analytical standards. Studies comparing extractable organofluorine (EOF) in serum to measured PFAS using organofluorine mass balance show that measurable PFAS only explain a fraction of EOF in human serum and that other sources of organofluorine may exist.
View Article and Find Full Text PDFThe ban/elimination of legacy per- and polyfluoroalkyl substances (PFASs) has led to a dramatic increase in the production and use of various emerging PFASs over the past decade. However, trophodynamics of many emerging PFASs in aquatic food webs remain poorly understood. In this study, samples of seawaters and marine organisms including 15 fish species, 21 crustacean species, and two cetacean species were collected from the northern South China Sea (SCS) to investigate the trophic biomagnification potential of legacy and emerging PFASs.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a group of persistent organic contaminants of which some are toxic and bioaccumulative. Several PFAS can be formed from the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs) as well as hydrochlorofluorocarbons (HFCs) and other ozone-depleting chlorofluorocarbon (CFC) replacement compounds. Svalbard ice cores have been shown to provide a valuable record of long-range atmospheric transport of contaminants to the Arctic.
View Article and Find Full Text PDFWith the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today's analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organofluorine (EOF), which yields the total amount of organofluorine.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFASs) are a diverse group of widely used anthropogenic chemicals that are environmentally persistent and bioaccumulative, especially in aquatic ecosystem. The heavily industrialized and urbanized Greater Bay Area in China represents a notable contamination source for PFASs, which may potentially influence the health of local oysters as a keystone species in local ecosystems and a popular seafood. In this study, samples of oysters and their surrounding waters were collected from the littoral zones of the Pearl River Estuary (PRE), China during winter 2020, where 44 PFASs, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFASs, and 17 PFAA precursors (or intermediates), were analyzed.
View Article and Find Full Text PDFThousands of per- and polyfluoroalkyl substances (PFAS) are on the global market, while only a minor proportion is monitored regularly in the environment. Wastewater treatment plants (WWTPs) have been suggested to be a point source for PFAS to the environment due to emission of effluent and sludge. In this study, 81 PFAS including two rarely studied perfluoroalkyl sulfonamide-based (FASA) copolymers were analyzed in sludge samples to understand the usage of PFAS in the society.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2022
Per- and polyfluoroalkyl substances (PFAS) have raised concerns due to their worldwide occurrence and adverse effects on both the environment and humans as well as posing challenges for monitoring. Further collection of information is required for a better understanding of their occurrence and the unknown fractions of the extractable organofluorine (EOF) not explained by commonly monitored target PFAS. In this study, eight pairs of raw and treated water were collected from drinking water treatment plants (DWTPs) around Taihu Lake in China and analyzed for EOF and 34 target PFAS.
View Article and Find Full Text PDFVarious per- and polyfluoroalkyl substances (PFASs) remain undiscovered and unexplored in the environment. The goals of this study were to discover new species of PFASs in effluent and surface waters from a fluorochemical industrial zone, and to assess their concentration, distribution, and temporal trends in the adjacent natural environment. In total, 83 emerging PFASs from 14 classes were identified, 22 of which were reported for the first time.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) is a persistent organic pollutant (POP) and emergent contaminant that are widespread in the environment. Understanding the mechanisms controlling the distribution of PFOS and its isomers between hydrargillite and the water phase is important in order to study their redistribution and mobility in the environment. This study investigated the effects of pH, humic acid, fulvic acid and NaSO on sorption of PFOS isomers to hydrargillite.
View Article and Find Full Text PDFPerfluoroalkyl acids (PFAAs) are highly persistent chemicals that are ubiquitously found in the environment. The atmospheric degradation of precursor compounds has been identified as a source of PFAAs and might be an important pathway for contamination. Lake Vättern is one of Sweden's largest lakes and is an important source for drinking water.
View Article and Find Full Text PDFThe ubiquitous occurrence of a few per- and polyfluoroalkyl substances (PFAS) in humans and the environment has been previously reported. However, the number of PFAS humans and the environment are potentially exposed to is much higher, making it difficult to investigate every sample in detail. More importantly, recent studies have shown an increasing fraction of potentially unknown PFAS in human samples.
View Article and Find Full Text PDFIntroduction: Poly-/per-fluoroalkyl substances (PFAS) are widespread environmental pollutants that may induce metabolic perturbations in humans, including particularly alterations in lipid profiles. Prenatal exposure to PFAS can cause lasting effects on offspring metabolic health, however, the underlying mechanisms are still unknown.
Objectives: The goal of the study was to investigate the impact of prenatal PFAS exposure on the lipid profiles in cord blood.
C-C perfluoroalkyl acids (PFAAs) are highly persistent chemicals that have been found in the environment. To date, much uncertainty still exists about their sources and fate. The importance of the atmospheric degradation of volatile precursors to C-C PFAAs were investigated by studying their distribution and seasonal variation in remote Arctic locations.
View Article and Find Full Text PDFAn inter-laboratory trial (ILT) has been performed to validate ISO 21675 method for the measurement of per-and polyfluoroalkyl substances (PFAS) in water samples using solid phase extraction method and high-performance liquid chromatography-tandem mass spectrometry. A total of twenty-seven laboratories from eleven countries (Belgium: 1, Canada: 2, China: 2, France: 1, Germany: 3, Italy: 2, Japan: 6, Netherlands: 2, South Korea: 1, Sweden: 4, and USA: 3) participated in the ILT. Results of the homogeneity of ILT water samples showed that the repeatability tended to increase from short-chain to long-chain of PFAS.
View Article and Find Full Text PDFThe high proportion of unidentified extractable organofluorine (EOF) observed globally in humans and the environment indicates widespread occurrence of unknown per- and polyfluoroalkyl substances (PFAS). However, efforts to standardize or assess the reproducibility of EOF methods are currently lacking. Here we present the first EOF interlaboratory comparison in water and sludge.
View Article and Find Full Text PDFEnviron Sci Technol
October 2021
Studies have highlighted the increasing fraction of unidentified organofluorine (UOF) compounds in human blood, whose health effects are not known. In this study, 130 whole blood samples from the Swedish general population were analyzed for extractable organofluorine (EOF) and selected per- and polyfluoroalkyl substances (PFAS). Organofluorine mass balance analysis revealed that 60% (0-99%) of the EOF in female samples could not be explained by the 63 monitored PFAS; in males, 41% (0-93%) of the EOF was of unidentified origin.
View Article and Find Full Text PDF