UV/H2O2 processes in drinking water treatment may generate byproducts which cause an increased response in Ames fluctuation assays. As this probably involves a mixture of substances in very low concentrations, it is challenging to identify the individual byproducts. Therefore it was studied under which conditions mutagenic byproducts are formed and how this can be prevented.
View Article and Find Full Text PDFConsidering the important role that surface waters serve for drinking water production, it is important to know if these resources are under the impact of contaminants. Apart from environmental pollutants such as pesticides, compounds such as (xeno)estrogens have received al lot of research attention and several large monitoring campaigns have been carried out to assess estrogenic contamination in the aquatic environment. The introduction of novel in vitro bioassays enables researchers to study if - and to what extent - water bodies are under the impact of less-studied (synthetic) hormone active compounds.
View Article and Find Full Text PDFTo screen for hormonal activity in water samples, highly sensitive in vitro CALUX bioassays are available which allow detection of estrogenic (ERα), androgenic (AR), progestagenic (PR), and glucocorticoid (GR) activities. This paper presents trigger values for the ERα, AR, PR, and GR CALUX bioassays for agonistic hormonal activities in (drinking) water, which define a level above which human health risk cannot be waived a priori and additional examination of specific endocrine activity may be warranted. The trigger values are based on 1) acceptable or tolerable daily intake (ADI/TDI) values of specific compounds, 2) pharmacokinetic factors defining their bioavailability, 3) estimations of the bioavailability of unknown compounds with equivalent hormonal activity, 4) relative endocrine potencies, and 5) physiological, and drinking water allocation factors.
View Article and Find Full Text PDFThe chemical water quality is often assessed by screening for a limited set of target chemicals. This 'conventional' target analysis approach inevitably misses chemicals present in the samples. In this study a 'broad' target screening approach for water quality assessment using high resolution and accurate mass spectrometry (HR MS) was applied to detect a wide variety of organic chemicals in 42 groundwater samples.
View Article and Find Full Text PDFBioassays are well established in the pharmaceutical industry and single compound analysis, but there is still uncertainty about their usefulness in environmental monitoring. We compared the responses of five bioassays designed to measure estrogenic activity (the yeast estrogen screen, ER-CALUX, MELN, T47D-KBluc, and E-SCREEN assays) and chemical analysis on extracts from four different water sources (groundwater, raw sewage, treated sewage, and river water). All five bioassays displayed similar trends and there was good agreement with analytical chemistry results.
View Article and Find Full Text PDFThe use of ETBE (ethyl-tert-butylether) as gasoline additive has recently grown rapidly. Contamination of aquatic systems is well documented for MTBE (methyl-tert-butylether), but less for other gasoline additives. Due to their mobility they may easily reach drinking water collection areas.
View Article and Find Full Text PDFIt is generally known that there are compounds present in the aquatic environment that can disturb endocrine processes, for example via interaction with the endogenous hormone receptors. Most research so far has focused on compounds that bind to the estrogen and/or androgen receptor, but ligands for other hormone receptors might also be present. In this study, a newly completed panel of human cell derived CALUX reporter gene bioassays was utilized to test water extracts for estrogen (ER), as well as androgen (AR), progesterone (PR), and glucocorticoid (GR) receptor mediated transactivation activity.
View Article and Find Full Text PDFAdult male fathead minnow were exposed for 14 or 28-days under flow-through conditions to undiluted filtered water samples from the rivers Meuse and Rhine in the Netherlands. The experiment included two vessels per treatment each containing 10 fish and samples of five fish were taken after 14 and 28 days. Additional groups were exposed to 17alpha-ethinylestradiol (EE2) as a reference and untreated drinking water as a negative control.
View Article and Find Full Text PDF