Publications by authors named "Leo Liu"

The development of oxygen reduction/evolution reaction (ORR/OER) bifunctional electrocatalysts with excellent electrocatalytic activity and stability is critical for Zinc-air batteries (ZABs), but remains challenging. Herein, NiFe-WNC with abundant multistage pore structure was prepared by chemical bath deposition and pyrolysis. FePc@NiFe-WNC bifunctional electrocatalyst was obtained by coupling dispersed FePc on it at room temperature.

View Article and Find Full Text PDF

Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization.

View Article and Find Full Text PDF

Selective hydroboration of C-C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C-C single bonds.

View Article and Find Full Text PDF

Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp)-C(sp) bond construction, which is highly valuable in medicinal chemistry. Based on a key Ni aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a Ni aryl amido intermediate is formed in situ during the reaction process.

View Article and Find Full Text PDF

Background: Polyps are the predominant precursors of colorectal cancer. In the past three decades, the incidence and mortality rates of colorectal cancer have been increasing in adults younger than 50 years.

Aims: The aim of this clinical audit was to evaluate the prevalence, characteristics and clinical associations of polyps in adults aged 18-49 years presenting to an established private gastroenterology clinic in the Toowoomba Darling Downs region.

View Article and Find Full Text PDF

Paired redox-neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non-toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C-C cross-coupling reactions. Here, we report the electro/Ni dual-catalyzed redox-neutral decarboxylative C(sp)-C(sp) cross-coupling reactions of pristine carboxylates with aryl bromides.

View Article and Find Full Text PDF

Backgrounds: Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types.

View Article and Find Full Text PDF

Seeking cathode materials with high areal capacity and excellent cycling tolerance is a key step to develop aqueous rechargeable zinc-based alkaline batteries with high energy density, power density and excellent stability. Here, the bilayered cathode composite (MCN-LDH@CP) of molybdate intercalated cobalt-nickel layered hydroxide nanosheets (MCN-LDH) grown on cobalt phosphate octahydrate microsheet (CP) was prepared by a two-step hydrothermal process. Molybdate intercalation significantly reduces the thickness of cobalt-nickel layered hydroxide, greatly increases its specific surface area, regulates its pore distribution, increases the crystal plane spacing, promotes the diffusion rate of hydroxide in it, and increases its specific capacity.

View Article and Find Full Text PDF

Ni-catalyzed electrochemical arylation is an attractive, emerging approach for molecular construction as it uses air-stable Ni catalysts and efficiently proceeds at room temperature. However, the homo-coupling of aryl halide substrates is one of the major side reactions. Herein, extensive experimental and computational studies were conducted to examine the mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides.

View Article and Find Full Text PDF

Ni-catalyzed electrochemical aryl amination (e-amination) is an attractive, emerging approach to building C-N bonds. Here, we report in-depth experimental and computational studies that examined the mechanism of Ni-catalyzed e-amination reactions. Key Ni-amine dibromide and Ni aryl amido intermediates were chemically synthesized and characterized.

View Article and Find Full Text PDF

The enhancement of separation processes and electrochemical technologies such as water electrolysers, fuel cells, redox flow batteries and ion-capture electrodialysis depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport.

View Article and Find Full Text PDF

Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid-scale renewable energy storage. However, physicochemical properties of redox-active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N'-dibutyrate-4,4'-bipyridinium, (CBu) V, as a highly stable, high capacity anolyte material under near pH neutral conditions.

View Article and Find Full Text PDF

When swimming near a solid planar boundary, bio-inspired propulsors can naturally equilibrate to certain distances from that boundary. How these equilibria are affected by asymmetric swimming kinematics is unknown. We present here a study of near-boundary pitching hydrofoils based on water channel experiments and potential flow simulations.

View Article and Find Full Text PDF

The effects of mutual coupling on the scanning characteristics of a four-element linear rectangular dielectric resonator antenna array (RDRA) are investigated for different inter-element spacing in this work. In particular, the gain and half-power beam width (HPBW) of an RDRA are studied for various scan angles in the E- and H-plane configurations. It is shown that for both the E and H planes, mutual coupling has an adverse effect on the performance of both phased array configurations.

View Article and Find Full Text PDF

The increasing energy storage demand of portable devices, electric vehicles, and scalable energy storage has been driving extensive research for more affordable, more energy dense battery technologies than Li ion batteries. The alkaline earth metal, calcium (Ca), has been considered an attractive anode material to develop the next generation of rechargeable batteries. Herein, the chemical designs, electrochemical performance, and solution and interfacial chemistry of Ca electrolytes are comprehensively reviewed and discussed.

View Article and Find Full Text PDF

Zinc metal represents a low-cost, high-capacity anode material to develop energy-dense aqueous redox-flow batteries (RFB). However, the energy-storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g.

View Article and Find Full Text PDF

Nearly 3.5 billion humans have oral health issues, including dental caries, which requires dentist-patient exposure in oral examinations. The automated approaches identify and locate carious regions from dental images by localizing and processing either colored photographs or X-ray images taken specialized dental photography cameras.

View Article and Find Full Text PDF

Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as and . Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen . We used the highly virulent cystic fibrosis Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the secretome.

View Article and Find Full Text PDF

Sequence-specific cleavage of RNA by nucleic acid catalysts in the absence of a divalent metal cation (M ) has remained an important goal in biomimicry with potential therapeutic applications. Given the lack of functional group diversity in canonical nucleotides, modified nucleotides with amino acid-like side chains were used to enhance self-cleavage rates at a single embedded ribonucleoside site. Previous works relied on three functional groups: an amine, a guanidine and an imidazole ensconced on three different nucleosides.

View Article and Find Full Text PDF

In this issue of Chem Catalysis, Liang et al. report an efficient electrochemical cyclization reaction of alkenes and amides to produce oxazolines with broad substrate scopes and good selectivities. A chloronium species generated by the chloride-mediated redox catalysis is proposed as a key intermediate.

View Article and Find Full Text PDF

The active site of [FeFe]-hydrogenase (H ase) is preorganized with an amine (azadithiolate) as a proton relay and a [4Fe4S] subunit as an electron reservoir, which together lower the overpotential for proton reduction and hydrogen oxidation by multiple-site concerted proton-electron transfer (MS-CPET). Herein, we report a mononuclear manganese complex, fac-[Mn(CO) (6-(2-hydroxyphenol)-2-pyridine-2-quinoline) Br] (1), as a rare model to fully mimic the functions of the H ase. In 1, a redox-active bidentate ligand with a pendent phenol replicates the roles of the electron reservoir and the proton relay in the enzyme.

View Article and Find Full Text PDF