There is ongoing and rapid advancement in approaches to modelling the fate of exhaled particles in different environments relevant to disease transmission. It is important that models are verified by comparison with each other using a common set of input parameters to ensure that model differences can be interpreted in terms of model physics rather than unspecified differences in model input parameters. In this paper, we define parameters necessary for such benchmarking of models of airborne particles exhaled by humans and transported in the environment during breathing and speaking.
View Article and Find Full Text PDFIn this paper, the statistical distributions of the position and the size of the evaporating droplets after a cough are evaluated, thus characterizing the inherent stochasticity of respiratory releases due to turbulence. For that, ten independent realizations of a cough with realistic initial conditions and in a room at 20 °C and 40% relative humidity were performed with large eddy simulations and Lagrangian tracking of the liquid phase. It was found that although turbulence decreases far from the emitter, it results in large variations in the spatial distribution of the droplets.
View Article and Find Full Text PDF