Formation of a habit plane during martensitic transformation is related to an invariant plane strain transformation, which involves dislocation glide and twins. In the current work, the Phenomenological Theory of Martensitic Transformation (PTMT) is employed to study the crystallographic features while the phase field simulation is used to study the microstructure evolution for martensitic transformation of Ti-6Al-4V alloy. Results show that mechanical constraints play a key role in the microstructure evolution.
View Article and Find Full Text PDFThis article details the ESAFORM Benchmark 2021. The deep drawing cup of a 1 mm thick, AA 6016-T4 sheet with a strong cube texture was simulated by 11 teams relying on phenomenological or crystal plasticity approaches, using commercial or self-developed Finite Element (FE) codes, with solid, continuum or classical shell elements and different contact models. The material characterization (tensile tests, biaxial tensile tests, monotonic and reverse shear tests, EBSD measurements) and the cup forming steps were performed with care (redundancy of measurements).
View Article and Find Full Text PDFTwo of the microstructural parameters most influential in the properties of polycrystalline materials are grain size and crystallographic texture. Although both properties have been extensively studied and there are a wide range of analysis tools available, they are generally considered independently, without taking into account the possible correlations between them. However, there are reasons to assume that grain size and orientation are correlated microstructural state variables, as they are the result of single microstructural formation mechanisms occurring during material processing.
View Article and Find Full Text PDFCompacted graphite iron is the material of choice for engine cylinder heads of heavy-duty trucks. Compacted graphite iron provides the best possible compromise between optimum mechanical properties, compared to flake graphite iron, and optimum thermal conductivity, compared to spheroidal graphite iron. The vermicular-shaped graphite particles, however, act as stress concentrators, and, as a result of delamination from the metal matrix, they are responsible for crack initiation during the thermomechanical fatigue cycles occurring through engine startup and shutdown cycles.
View Article and Find Full Text PDF